リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「DISCRETENESS OF HYPERBOLIC ISOMETRIES BY TEST MAPS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

DISCRETENESS OF HYPERBOLIC ISOMETRIES BY TEST MAPS

Gongopadhyay, Krishnendu 大阪大学 DOI:10.18910/83208

2021.07

概要

Let F = R, C or the Hamilton’s quaternions H. Let Hn denote the n-dimensional F-hyperbolic space. Let U(n, 1; F) be the linear group that acts by the isometries of Hn . A subgroup G of U(n, 1; F) is called Zariski dense if it does not fix a point on Hn ∪ ∂Hn and neither it preserves a totally geodesic subspace of Hn . We prove that a Zariski dense subgroup G of U(n, 1; F) is discrete if for every loxodromic element g e G, the two generator subgroup ( f , g) is discrete, where f e U(n, 1; F) is a test map not necessarily from G.Let F = R, C or the Hamilton’s quaternions H. Let Hn denote the n-dimensional F-hyperbolic space. Let U(n, 1; F) be the linear group that acts by the isometries of Hn . A subgroup G of U(n, 1; F) is called Zariski dense if it does not fix a point on Hn ∪ ∂Hn and neither it preserves a totally geodesic subspace of Hn . We prove that a Zariski dense subgroup G of U(n, 1; F) is discrete if for every loxodromic element g e G, the two generator subgroup ( f , g) is discrete, where f e U(n, 1; F) is a test map not necessarily from G.

参考文献

[1] W. Abikoff and A. Haas: Nondiscrete groups of hyperbolic motions, Bull. London Math. Soc. 22 (1990), 233–238.

[2] L.V. Ahlfors: Clifford numbers and Mo¨bius transformations in Rn; in Clifford algebras and their applica-tions in mathematical physics (Canterbury, 1985), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci 183, Reidel, Dordrecht, 1986, 167–175.

[3] L.V. Ahlfors: Mo¨bius transformations and Clifford numbers; in Differential geometry and complex analy- sis, Springer, Berlin, 1985, 65–73.

[4] W.S. Cao and H. Tan: Jørgensen’s inequality for quaternionic hyperbolic space with elliptic elements, Bull. Aust. Math. Soc. 81 (2010), 121–131.

[5] W.S. Cao and J.R. Parker: Jørgensen’s inequality and collars in n-dimensional quaternionic hyperbolic space, Q. J. Math. 62 (2013), 523–543.

[6] C. Cao and P.L. Waterman: Conjugacy invariants of Mo¨bius groups; in Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, 109–139.

[7] W.S. Cao: Discreteness criterion in SL(2, C) by a test map, Osaka J. Math. 49 (2012), 901–907.

[8] S.S. Chen and L. Greenberg: Hyperbolic spaces; in Contributions to analysis, Academic Press, New York, 1974, 49–87.

[9] M. Chen: Discreteness and convergence of Mo¨bius groups, Geom. Dedicata 104 (2004), 61–69.

[10] A. Fang and B. Nai: On the discreteness and convergence in n-dimensional Mo¨bius groups, J. London Math. Soc. (2) 61 (2000), 761–773.

[11] S. Friedland and S. Hersonsky: Jorgensen’s inequality for discrete groups in normed algebras, Duke Math.J. 69 (1993), 593–614.

[12] K. Gongopadhyay and R.S. Kulkarni: z-classes of isometries of the hyperbolic space, Conform. Geom. Dyn. 13 (2009), 91–109.

[13] K. Gongopadhyay, A. Mukherjee, and S.K. Sardar: Test maps and discreteness in SL(2, H), Glasg. Math.J. 61 (2019), 523–533.

[14] K. Gongopadhyay and A. Mukherjee: Extremality of quaternionic Jørgensen inequality, Hiroshima Math.J. 47 (2017), 113–137.

[15] K. Gongopadhyay, M.M. Mishra, and D. Tiwari: On discreteness of subgroups of quaternionic hyperbolic isometries, Bull. Aust. Math. Soc. 101 (2020), 283–293.

[16] S. Hersonsky and F. Paulin: On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996), 719–737.

[17] Y. Jiang, H. Wang, and B. Xie: Discreteness of subgroups of PU(1, n; C), Proc. Japan Acad., Ser. A, 84(2008), 78–80.

[18] R. Kellerhals: Quaternions and some global properties of hyperbolic 5-manifolds, Canad. J. Math. 55(2003), 1080–1099.

[19] L.L. Li and X.T. Wang: Discreteness criteria for Mo¨bius groups acting on Rn. II, Bull. Aust. Math. Soc. 80 (2009), 275–290.

[20] G.J. Martin: On discrete Mo¨bius groups in all dimensions: A generalization of Jørgensen’s inequality, Acta Math. 163 (1989), 253–289.

[21] H. Qin and Y. Jiang: Discreteness criteria based on a test map in PU(n, 1), Proc. Indian Acad. Sci. Math. Sci. 122 (2012), 519–524.

[22] J.G. Ratcliffe: Foundations of hyperbolic manifolds, second edition, Graduate Texts in Mathematics 149, Springer, New York, 2006.

[23] X. Wang, L.L. Li, and W.S. Cao: Discreteness criteria for Mo¨bius groups acting on Rn,. Israel J. Math. 150 (2005), 357–368.

[24] P.L. Waterman: Mo¨bius transformations in several dimensions, Adv. Math. 101 (1993), 87–113.

[25] S. Yang and T. Zhao: Test maps and discrete groups in SL(2, C) II. Glasg. Math. J. 56 (2014), 53–56.

[26] S. Yang: Test maps and discrete groups in SL(2, C), Osaka J. Math. 46 (2009), 403–409.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る