リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「TORUS ACTIONS OF COMPLEXITY ONE IN NON-GENERAL POSITION」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

TORUS ACTIONS OF COMPLEXITY ONE IN NON-GENERAL POSITION

Ayzenberg, Anton 大阪大学 DOI:10.18910/84953

2021.10

概要

Let the compact torus Tn−1 act on a smooth compact manifold X2n effectively with nonempty finite set of fixed points. We pose the question: what can be said about the orbit space X2n/Tn−1 if the action is cohomologically equivariantly formal (which essentially means that Hodd(X2n; Z) = 0)? It happens that homology of the orbit space can be arbitrary in degrees 3 and higher. For any finite simplicial complex L we construct an equivariantly formal manifold X2n such that X2n/Tn−1 is homotopy equivalent to Σ3L. The constructed manifold X2n is the total space of a projective line bundle over the permutohedral variety hence the action on X2n is Hamiltonian and cohomologically equivariantly formal. We introduce the notion of an action in j-general position and prove that, for any simplicial complex M, there exists an equivariantly formal action of complexity one in j-general position such that its orbit space is homotopy equivalent to Σ j+2 M.

参考文献

[1] A.A. Ayzenberg: Substitutions of polytopes and of simplicial complexes, and multigraded Betti numbers, Trans. Moscow Math. Soc. 2013, 175–202.

[2] A. Ayzenberg: Torus actions of complexity one and their local properties, P. Steklov Inst. Math. 302 (2018), 16–32, preprint arXiv:1802.08828.

[3] A. Ayzenberg: Torus action on quaternionic projective plane and related spaces, preprint arXiv:1903.03460.

[4] A. Ayzenberg and M. Masuda: Orbit spaces of equivariantly formal torus actions, preprint arXiv:1912.11696.

[5] A. Bahri, M. Bendersky, F.R. Cohen and S. Gitler: Operations on polyhedral products and a new topolog- ical construction of infinite families of toric manifolds, Homology Homotopy Appl. 17 (2015), 137–160.

[6] V. Buchstaber and T. Panov: Toric Topology, Mathematical Surveys and Monographs 204, American Math- ematical Society, Providence, RI, 2015.

[7] V.M. Buchstaber, T.E. Panov ans N. Ray: Spaces of polytopes and cobordism of quasitoric manifolds, Mosc. Math. J. 7 (2007), 219–242.

[8] V.M. Buchstaber and S. Terzic´: Topology and geometry of the canonical action of T 4 on the complex Grassmannian G4,2 and the complex projective space CP5, Moscow Math. J. 16 (2016), 237–273 (preprint: arXiv:1410.2482).

[9] V. Cherepanov: Orbit spaces of torus actions on Hessenberg varieties, to appear in Sb. Math., preprint arXiv:1905.02294.

[10] D. Cox, J. Little and H. Schenck: Toric varieties, Graduate Studies in Mathematics 124, American Mathe- matical Society, Providence, RI. 2011.

[11] M. Davis and T. Januszkiewicz: Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(1991), 417–451.

[12] M. Franz: A quotient criterion for syzygies in equivariant cohomology, Transform. Groups 22 (2017), 933–965 (preprint arXiv:1205.4462).

[13] J. Huh: Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties, Ph.D. thesis at University of Michigan, 2014.

[14] Y. Karshon and S. Tolman: Topology of complexity one quotients, preprint arXiv:1810.01026v1.

[15] M. Masuda and T. Panov: On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711–746 (preprint arXiv:math/0306100).

[16] A. Postnikov: Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN (2009), 1026–1106.

[17] R. Rado: An inequality, J. London Math. Soc. 27 (1952), 1–6.

[18] S. Smale: A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604–610.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る