リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comprehensive study of magma flow style based on deformed bubble structure of pumice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comprehensive study of magma flow style based on deformed bubble structure of pumice

大橋, 正俊 東京大学 DOI:10.15083/0002004728

2022.06.22

概要

Bubble textures in pumice have been thought to reflect the history of magma ascent. Thus, it is valuable to create a new analysis method based on the morphological variables, such as bubble size, bubble number density, and bubble shape. The purpose of this thesis is to study the shape of deformed bubbles in various ways and develop a new scheme to connect bubble textures with the dynamics of explosive eruptions. Pumice containing highly deformed bubbles like tubes is called as tube pumice, and it is thought to record the flow history of magma up to fragmentation surface. In order to extract on magma flow, especially the velocity profile, from such a deformed bubble structure, it is necessary to solve the following three problems. (1) Calculate transient bubble deformation, (2) Evaluate the effect of bubble interaction on its shape, and (3) Calculate bubble deformation in an arbitrary velocity field.

First, using the droplet deformation model of Jackson and Tucker (2003), we developed a model that can calculate the transient deformation of a single bubble in an arbitrary velocity field. Next, to evaluate the interaction between bubbles, we performed tensile experiments with a solidifying foam. By comparing the experimental results of bubble shape with the numerical simulations, we confirmed that the average shape of bubbles coincided with the theoretical deformation model of a single bubble. This result suggests that the average of bubbles in pumice can be compared with the numerical simulation of a bubble in a conduit flow.

Next, the bubble deformation model and the quasi-two-dimensional steady conduit flow model were combined to solve the bubble deformation in the conduit. We adapt three rheological models to reproduce various velocity profiles. In the Newtonian isothermal fluid, the velocity profile across the conduit became parabolic. On the other hand, in the fluid with viscous heating, the temperature near the conduit wall rose up sharply, leading to a strong reduction in viscosity. The velocity profile changes from a parabolic shape to a plug-like shape just above the conduit inlet. The bubble shape at the fragmentation surface depends significantly on the velocity profile. The parabolic velocity profile produced highly elongated bubbles deformed mainly by simple shear, but the plug-like velocity profile produced less elongated bubbles deformed primarily by pure shear

Finally, we conducted a bubble structure analysis of pumice erupted at Taupo Volcano in order to discuss which velocity profile was reasonable. As a result of the analysis, it was found that the plinian eruption had a single peak in the bubble shape distribution, while the ignimbrite eruption had a broad distribution and contained highly elongated bubbles. The comparison of the natural bubble textures with the simulation results suggested that the velocity profile of the plinian eruption was close to a plug-like shape. The reason why the ignimbrite eruption produced a number of tube pumice was explained by shallowing the transition depth at which the velocity profile changed from parabolic to plug-like.

The velocity profile in a conduit flow is closely related to several essential eruption processes, such as degassing and brittle fragmentation. It is of great significance to give constraints to the velocity profile from the natural quantitative observation of pyroclasts.

この論文で使われている画像

参考文献

Acrivos, A., and T. S. Lo (1978), Deformation and breakup of a single slender drop in an extensional flow, Journal of Fluid Mechanics, 86(04), 641–672, doi:10.1017/S0022112078001329.

Acrivos, A. Lo, T. (1980), Extensional flow of dilute polymer solutions, 97(1978), 666–671.

Agur, E. E. (1983), Heat transport in polymer melt flows, Ph.D. thesis, McMaster University, Hamilton, Ontario, L8S 4L7 Canada.

Aki, K., and P. G. Richards (2002), Quantitative seismology, University Science Books.

Alidibirov, M. A. (1994), A model for viscous magma fragmentation during volcanic blasts, Bulletin of Volcanology, 56(6-7), 459–465, doi:10.1007/BF00302827.

Amoruso, A., and L. Crescentini (2009), Shape and volume change of pressurized ellipsoidal cavities from deformation and seismic data, Journal of Geophysical Research, 114 B2), B02,210, doi:10.1029/2008JB005946.

Bacon, C. R. (1983), Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A., Journal of Volcanology and Geothermal Research, 18(1-4), 57–115, doi:10.1016/0377-0273(83)90004-5.

Bagdassarov, N., and D. Dingwell (1994), Thermal properties of vesicular rhyolite, Journal of Volcanology and Geothermal Research, 60, 179–191.

Bagdassarov, N. S., a. M. Dorfman, and D. B. Dingwell (2000), Effect of alkalis, phosporus, and water on the surface tension of haplogranite melt, American Mineralogist, 85, 33–40, doi:10.2138/am-2000-0105.

Barmin, A. A., E. A. Vedeneeva, and O. E. Melnik (2004), Effect of viscous dissipation on nonisothermal high-viscosity magma flow in a volcanic conduit, Fluid Dynamics, 39(6), 863–873, doi:10.1007/s10697-004- 0003-2.

Batchelor, G. K. G. K. (1967), An introduction to fluid dynamics, 615 pp., Cambridge University Press.

Bilby, B. A., J. D. Eshelby, and A. K. Kundu (1975), The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity, Tectonophysics, 28(4), 265–274, doi: 10.1016/0040-1951(75)90041-4.

Bird, R. B., W. E. Stewart, and E. N. Lightfoot (2007), Transport phenomena, 905 pp., J. Wiley.

Bouvet de Maisonneuve, C., O. Bachmann, and A. Burgisser (2009), Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): Insights into the eruptive dynamics of a large rhyolitic eruption,

Bulletin of Volcanology, 71(6), 643–658, doi:10.1007/s00445-008-0250-x.

Bradley, D., and G. Roth (2007), Adaptive Thresholding using the Integral Image, Journal of Graphics Tools, 12(2), 13–21, doi:10.1080/2151237X.2007.10129236.

Budiansky, B., J. Hutchinson, and S. Slutsky (1982), Void Growth and Collapse in Viscous Solids, in Mechanics of Solids, pp. 13–45, Elsevier, doi:10.1016/b978-0-08-025443-2.50009-4.

Campagnola, S., C. Romano, L. G. Mastin, and A. Vona (2016), Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions, Contributions to Mineralogy and Petrology, 171(6), 1–25, doi:10.1007/s00410-016-1265-5.

Carey, S., and H. Sigurdsson (1989), The intensity of plinian eruptions, Bulletin of Volcanology, 51(1), 28–40, doi:10.1007/BF01086759.

Caricchi, L., A. Pommier, M. Pistone, J. Castro, A. Burgisser, and D. Perugini (2011), Strain-induced magma degassing: Insights from simple-shear experiments on bubble bearing melts, Bulletin of Volcanology, 73(9), 1245–1257, doi:10.1007/s00445-011-0471-2.

Caserta, S., S. Reynaud, M. Simeone, and S. Guido (2007), Drop deformation in sheared polymer blends, Journal of Rheology, 51(4), 761–774, doi:10.1122/1.2723148.

Cole, J. W., S. J. Brown, R. M. Burt, S. W. Beresford, and C. J. Wilson (1998), Lithic types in ignimbrites as a guide to the evolution of a caldera complex, Taupo volcanic centre, New Zealand, Journal of Volcanology and Geothermal Research, 80(3-4), 217–237, doi:10.1016/S0377-0273(97)00045-0.

Colucci, S., P. Papale, and C. P. Montagna (2017), Non-Newtonian flow of bubbly magma in volcanic conduits, Journal of Geophysical Research: Solid Earth, 122(3), 1789–1804, doi:10.1002/2016JB013383.

Cordonnier, B., S. M. Schmalholz, K. Hess, and D. B. Dingwell (2012), Viscous heating in silicate melts : An experimental and numerical comparison, 117(September 2010), 1–13, doi:10.1029/2010JB007982.

Costa, A., and G. Macedonio (2002), Nonlinear phenomena in fluids with temperature-dependent viscosity: An hysteresis model for magma flow in conduits, Geophysical Research Letters, 29(10), 40–1–40–4, doi: 10.1029/2001gl014493.

Costa, A., and G. Macedonio (2005), Viscous heating effects in fluids with temperature-dependent viscosity: triggering of secondary flows, 540, 21–38, doi:10.1017/S0022112005006075.

Costa, A., O. Melnik, and E. Vedeneeva (2007), Thermal effects during magma ascent in conduits, Journal of Geophysical Research: Solid Earth, 112(12), 1–16, doi:10.1029/2007JB004985.

Coward, M. P. (1980), The analysis of flow profiles in a basaltic dyke using strained vesicles, Journal of the Geological Society, 137(5), 605–615, doi:10.1144/gsjgs.137.5.0605.

Cox, H. W. (1973), Shear heating of polymer melts in die flows, Ph.D. thesis, University of Minnesota Minneapolis, Minnesota.

Cross, M. M. (1965), Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, 20(5), 417–437, doi:10.1016/0095-8522(65)90022-X.

Davis, P. M. (1986), Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea volcano, Hawaii, Journal of Geophysical Research: Solid Earth, 91(B7), 7429–7438, doi:10.1029/JB091iB07p07429.

Degruyter, W., O. Bachmann, and A. Burgisser (2010a), Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc), Bulletin of Volcanology, 72(1), 63–74, doi:10.1007/s00445-009-0302-x.

Degruyter, W., A. Burgisser, O. Bachmann, and O. Malaspinas (2010b), Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices, Geosphere, 6(5), 470–481, doi: 10.1130/GES00555.1.

Delaby, I., B. Ernst, Y. Germain, and R. Muller (1994), Droplet deformation in polymer blends during uniaxial elongational flow: Influence of viscosity ratio for large capillary numbers, Journal of Rheology, 38(6), 1705–1720, doi:10.1122/1.550568.

Dingwell, D., Y. Lavallée, K. U. Hess, A. Flaws, J. Marti, A. R. L. Nichols, H. A. Gilg, and B. Schillinger (2016), Eruptive shearing of tube pumice: pure and simple, Solid Earth, 7(5), 1383–1393, doi:10.5194/sed7-3053-2015.

Dingwell, D. B. (1996), Volcanic Dilemma : Flow or Blow ?, Science, 273(August), 1054–1055, doi: 10.1126/science.273.5278.1054.

Dunbar, N. W., and P. R. Kyle (1993), Lack of volatile gradient in the Taupo plinian-ignimbrite transition: evidence from melt inclusion analysis, American Mineralogist, 78(5-6), 612–618.

Dunbar, N. W., R. L. Hervig, and P. R. Kyle (1989a), Determination of pre-eruptive H2O, F and Cl contents of silicic magmas using melt inclusions: Examples from Taupo volcanic center, New Zealand, Bulletin of Volcanology, 51(3), 177–184, doi:10.1007/BF01067954.

Dunbar, N. W., P. R. Kyle, and C. J. Wilson (1989b), Evidence for limited zonation in silicicmagma systems, Taupo Volcanic Zone, New Zealand, Geology, 17(3), 234–236, doi:10.1130/0091-7613(1989)017<0234:EFLZIS>2.3.CO;2.

Eshelby, J. D. (1957), The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241(1226).

Flinn, D. (1962), On folding during three-dimensional progressive deformation, doi:10.1144/gsjgs.118.1.0385.

Frankel, N. A., and A. Acrivos (1970), The constitutive equation for a dilute emulsion, Journal of Fluid Mechanics, 44(01), 65–78, doi:10.1017/S0022112070001696.

Gaonac’h, H., J. Stix, and S. Lovejoy (1996), Scaling effects on vesicle shape, size and heterogeneity of lavas from Mount Etna, Journal of Volcanology and Geothermal Research, 74(1-2), 131–153, doi:10.1016/S0377-0273(96)00045-5.

Geshi, N., and Y. Miyabuchi (2016), Conduit enlargement during the precursory Plinian eruption of Aira Caldera, Japan, Bulletin of Volcanology, 78(9), doi:10.1007/s00445-016-1057-9.

Giachetti, T., A. Burgisser, L. Arbaret, T. H. Druitt, and K. Kelfoun (2011), Quantitative textural analysis of Vulcanian pyroclasts (Montserrat) using multi-scale X-ray computed microtomography: Comparison with results from 2D image analysis, Bulletin of Volcanology, 73(9), 1295–1309, doi:10.1007/s00445-011-0472-1.

Gurioli, L., A. J. L. Harris, B. F. Houghton, M. Polacci, and M. Ripepe (2008), Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano, Journal of Geophysical Research, 113(January), 1–16, doi:10.1029/2007JB005328.

Hale, A. J., and H. B. Mühlhaus (2007), Modelling shear bands in a volcanic conduit: Implications for over-pressures and extrusion-rates, Earth and Planetary Science Letters, 263(1-2), 74–87, doi: 10.1016/j.epsl.2007.08.026.

Hess, K., and D. Dingwell (1996), Viscosities of hydrous leucogranitic melts : A non-Arrhenian on the nature and efficiency of magmatic processes . As pendence ( H20 concentration in weight percent ) for each, American Mineralogist, 81, 1297–1300, doi:10.1016/0016-7037(82)90381-7.

Hess, K. U., B. Cordonnier, Y. Lavallée, and D. B. Dingwell (2008), Viscous heating in rhyolite: An in situ experimental determination, Earth and Planetary Science Letters, 275(1-2), 121–126, doi: 10.1016/j.epsl.2008.08.014.

Hinch, E. J., and A. Acrivos (1980), Long slender drops in a simple shear flow, Journal of Fluid Mechanics, 98(02), 305–328, doi:10.1017/S0022112080000171.

Hort, M., and J. Gardner (2000), Constraints on cooling and degassing of pumice during Plinian volcanic eruptions based on model calculations, Journal of Geophysical Research: Solid Earth, 105(B11), 25,981–26,001, doi:10.1029/2000jb900186.

Houghton, B. F., and C. J. N. Wilson (1989), A vesicularity index for pyroclastic deposits, Bulletin of Volcanology, 51(6), 451–462, doi:10.1007/BF01078811.

Houghton, B. F., B. J. Hobden, K. V. Cashman, C. J. Wilson, and R. T. Smith (2003), Large-scale interaction of lake water and rhyolitic magma during the 1.8 ka Taupo eruption, New Zealand, Geophysical Monograph Series, 140(Figure 1), 97–109, doi:10.1029/140GM06.

Houghton, B. F., R. J. Carey, K. V. Cashman, C. J. Wilson, B. J. Hobden, and J. E. Hammer (2010), Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8ka Taupo eruption, New Zealand: Evidence from clast vesicularity, Journal of Volcanology and Geothermal Research, 195(1), 31–47, doi: 10.1016/j.jvolgeores.2010.06.002.

Houghton, B. F., R. J. Carey, and M. D. Rosenberg (2014), The 1800a Taupo eruption: "Ill wind" blows the ultraplinian type event down to Plinian, Geology, 42(5), 459–461, doi:10.1130/G35400.1.

Huber, C., Y. Su, C. T. Nguyen, a. Parmigiani, H. M. Gonnermann, and J. Dufek (2013), Journal of Geophysical Research : Solid Earth A new bubble dynamics model to study bubble growth , deformation , and coalescence, pp. 1–24, doi:10.1002/2013JB010419.Received.

Jackson, N. E., and C. L. Tucker (2003), A model for large deformation of an ellipsoidal droplet with interfacial tension, Journal of Rheology, 47(3), 659–682, doi:10.1122/1.1562152.

Kaminski, É., and C. Jaupart (1997), Expansion and quenching of vesicular magma fragments in Plinian eruptions, Journal of Geophysical Research: Solid Earth, 102(B6), 12,187–12,203, doi:10.1029/97jb00622.

Khakhar, D., and J. Ottino (1986), Deformation and breakup of slender drops in linear flows, Journal of Fluid Mechanics, 166(1986), doi:10.1017/S0022112086000149.

Kieffer, S. W. (1977), Sound speed in liquid-gas mixtures: Water-air and water-steam, Journal of Geophysical Research, 82(20), 2895–2904, doi:10.1029/JB082i020p02895.

Klug, C., and K. V. Cashman (1994), Vesiculation of May 18, 1980, Mount St. Helens magma, Geology, 22(5), 468–472, doi:10.1130/0091-7613(1994)022<0468:VOMMSH>2.3.CO.

Klug, C., K. Cashman, and C. Bacon (2002), Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon, Bulletin of Volcanology, 64(7), 486–501,doi:10.1007/s00445-002-0230-5.

Laumonier, M., L. Arbaret, A. Burgisser, and R. Champallier (2011), Porosity redistribution enhanced by strain localization in crystal-rich magmas, Geology, 39(8), 715–718, doi:10.1130/G31803.1.

Legland, D., I. Arganda-carreras, P. Andrey, U. R. Biopolymers, and I. J.-p. Bourgin (2016), MorphoLibJ : integrated library and plugins for mathematical morphology with ImageJ, 32(July), 3532–3534, doi: 10.1093/bioinformatics/btw413.

Legros, F., K. Kelfoun, and J. Martí (2000), The influence of conduit geometry on the dynamics of calderaforming eruptions, Earth and Planetary Science Letters, 179(1), 53–61, doi:10.1016/S0012-821X(00)00109-6.

Lensky, N. G., O. Navon, and V. Lyakhovsky (2004), Bubble growth during decompression of magma: Experimental and theoretical investigation, Journal of Volcanology and Geothermal Research, 129(1-3), 7–22, doi:10.1016/S0377-0273(03)00229-4.

Lipshitz, S. D., and C. W. Macosko (1976), Rheological Changes During a Urethane Network Polymerization, Polymer Engineering & Science, 16(12), 803–810.

Liu, Y., Y. Zhang, and H. Behrens (2005), Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts, Journal of Volcanology and Geothermal Research, 143(1-3), 219–235, doi:10.1016/j.jvolgeores.2004.09.019.

Llewellin, E. W., H. M. Mader, and S. D. R. Wilson (2002a), The constitutive equation and flow dynamics of bubbly magmas, Geophysical research letters., 29(24), 2170, doi:10.1029/2002GL015697.

Llewellin, E. W., H. M. Mader, and S. D. R. Wilson (2002b), The rheology of a bubbly liquid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 458(2020), 987–1016, doi: 10.1098/rspa.2001.0924.

Loewenberg, M. (1998), Numerical Simulation of Concentrated Emulsion Flows, Journal of fluids engineering, 120(4), 824–832.

Mader, H. M., E. W. Llewellin, and S. P. Mueller (2013), The rheology of two-phase magmas: A review and analysis, Journal of Volcanology and Geothermal Research, 257, 135–158, doi:10.1016/j.jvolgeores.2013.02.014.

Manga, M., and M. Loewenberg (2001), Viscosity of magmas containing highly deformable bubbles, Journal of Volcanology and Geothermal Research, 105(1-2), 19–24, doi:10.1016/S0377-0273(00)00239-0.

Manga, M., J. Castro, K. V. Cashman, and M. Loewenberg (1998), Rheology of bubble-bearing magmas, Journal of Volcanology and Geothermal Research, 87(1-4), 15–28, doi:10.1016/S0377-0273(98)00091-2.

Mangan, M., and T. Sisson (2000), Delayed, disequilibrium degassing in rhyolite magma: Decompression experiments and implications for explosive volcanism, Earth and Planetary Science Letters, 183(3-4), 441–455, doi:10.1016/S0012-821X(00)00299-5.

Mangan, M., L. Mastin, and T. Sisson (2004), Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling, Journal of Volcanology and Geothermal Research, 129(1-3), 23–36, doi:10.1016/S0377-0273(03)00230-0.

Martel, C., D. B. Dingwell, O. Spieler, M. Pichavant, and M. Wilke (2000), Fragmentation of foamed silicate melts: an experimental study, Earth and Planetary Science Letters, 178, 47–58.

Marti, J., C. Soriano, and D. B. Dingwell (1999), Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation, Nature, 402(6762), 650–653, doi:10.1038/45219.

Mastin, L. G. (2002), Insights into volcanic conduit flow from an open-source numerical model, Geochemistry, Geophysics, Geosystems, 3(7), 1–18, doi:10.1029/2001gc000192.

Mastin, L. G. (2005), The controlling effect of viscous dissipation on magma flow in silicic conduits, Journal of Volcanology and Geothermal Research, 143(1-3), 17–28, doi:10.1016/j.jvolgeores.2004.09.008.

Mastin, L. G. (2007), A user-friendly one-dimensional model for wet volcanic plumes, Geochemistry, Geophysics, Geosystems, 8(3), 1–24, doi:10.1029/2006GC001455.

Mastin, L. G., and M. S. Ghiorso (2000), A Numerical Program for Steady-State Flow of Magma-Gas Mixtures Through Vertical Eruptive Conduits.

Matsumoto, K., and M. Nakamura (2017), Syn-eruptive breakdown of pyrrhotite: a record of magma fragmentation, air entrainment, and oxidation, Contributions to Mineralogy and Petrology, 172(10), 1–19, doi:10.1007/s00410-017-1403-8.

Meyer, F., and S. Beucher (1990), Morphological segmentation, Journal of Visual Communication and Image Representation, 1(1), 21–46, doi:10.1016/1047-3203(90)90014-M.

Michaud-Dubuy, A., G. Carazzo, E. Kaminski, and F. Girault (2018), A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns, Journal of Volcanology and Geothermal Research, 357, 349–361, doi:10.1016/j.jvolgeores.2018.05.005.

Minale, M. (2010), Models for the deformation of a single ellipsoidal drop: A review, Rheologica Acta, 49(8), 789–806, doi:10.1007/s00397-010-0442-0.

Mitchell, S., et al. (2018), The interplay among clast size, vesicularity, postfragmentation expansion, and clast breakage: An example from the 1.8 ka Taupo eruption, in Field Volcanology: A Tribute to the Distinguished Career of Don Swanson, p. 538, Geological Society of America, doi:10.1130/2018.2538(17).

Mitchell, S. J., et al. (2019), Submarine giant pumice: a window into the shallow conduit dynamics of a recent silicic eruption, Bulletin of Volcanology, 81(7), doi:10.1007/s00445-019-1298-5.

Mizuno, N., M. Ichihara, and N. Kame (2015), Moment tensors associated with the expansion and movement of fluid in ellipsoidal cavities, Journal of Geophysical Research: Solid Earth, 120(9), 6058–6070, doi: 10.1002/2015JB012084.

Moitra, P., H. M. Gonnermann, B. F. Houghton, and T. Giachetti (2013), Relating vesicle shapes in pyroclasts to eruption styles, Bulletin of Volcanology, 75(2), doi:10.1007/s00445-013-0691-8.

Moitra, P., H. M. Gonnermann, B. F. Houghton, and C. S. Tiwary (2018), Fragmentation and Plinian eruption of crystallizing basaltic magma, Earth and Planetary Science Letters, 500, 97–104, doi: 10.1016/j.epsl.2018.08.003.

Mondy, L., et al. (2014), Experiments to Populate and Validate a Processing Model for Polyurethane Foam : BKC 44306 PMDI-10, SAND2014-3292, Sandia National Laboratories, (March).

Mondy, L. A., R. R. Rao, M. C. Celina, A. Quintana, B. Shelden, N. B. Wyatt, and E. M. Russick (2013), Experiments to estimate polyurethane foam reaction kinetics, Proceedings of the Polymer Processing Society 29th Annual Meeting, pp. 15–20.

Neff, R. A., C. W. Macosko, and W. A. Se (1996), Simultaneous measurement of viscoelastic changes and cell opening during processing of flexible polyurethane foam, Rheologica Acta, 666, 656–666.

Okumura, S., M. Nakamura, A. Tsuchiyama, T. Nakano, and K. Uesugi (2008), Evolution of bubble microstructure in sheared rhyolite: Formation of a channel-like bubble network, Journal of Geophysical Research: Solid Earth, 113(7), 1–18, doi:10.1029/2007JB005362.

Okumura, S., M. Nakamura, S. Takeuchi, A. Tsuchiyama, T. Nakano, and K. Uesugi (2009), Magma deformation may induce non-explosive volcanism via degassing through bubble networks, Earth and Planetary Science Letters, 281(3-4), 267–274, doi:10.1016/j.epsl.2009.02.036.

Okumura, S., M. Nakamura, K. Uesugi, T. Nakano, and T. Fujioka (2013), Coupled effect of magma degassing and rheology on silicic volcanism, Earth and Planetary Science Letters, 362, 163–170, doi: 10.1016/j.epsl.2012.11.056.

Otsu, N. (1979), A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66, doi:10.1109/TSMC.1979.4310076.

Pal, R. (2003), Rheological behavior of bubble-bearing magmas, Earth and Planetary Science Letters, 207(1-4), 165–179, doi:10.1016/S0012-821X(02)01104-4.

Palladino, D. M., S. Simei, and K. Kyriakopoulos (2008), On magma fragmentation by conduit shear stress: Evidence from the Kos Plateau Tuff, Aegean Volcanic Arc, Journal of Volcanology and Geothermal Research, 178(4), 807–817, doi:10.1016/j.jvolgeores.2008.09.011.

Papale, P. (1999), Strain-induced magma fragmentation in explosive eruptions, Nature, 397(February), 425–428, doi:10.1038/17109.

Pearson, J. R. (1977), Variable-viscosity flows in channels with high heat generation, Journal of Fluid Mechanics, 83(1), 191–206, doi:10.1017/S0022112077001141.

Phillips, J. C., S. J. Lane, A. M. Lejeune, and M. Hilton (1995), Gum rosin-acetone system as an analogue to the degassing behaviour of hydrated magmas, Bulletin of Volcanology, 57(4), 263–268, doi: 10.1007/BF00265425.

Pistone, M., L. Caricchi, P. Ulmer, L. Burlini, P. Ardia, E. Reusser, F. Marone, and L. Arbaret (2012), Deformation experiments of bubble- and crystal-bearing magmas: Rheological and microstructural analysis, Journal of Geophysical Research: Solid Earth, 117(5), doi:10.1029/2011JB008986.

Pistone, M., L. Caricchi, P. Ulmer, E. Reusser, and P. Ardia (2013), Rheology of volatile-bearing crystal mushes: Mobilization vs. viscous death, Chemical Geology, 345, 16–39, doi:10.1016/j.chemgeo.2013.02.007.

Polacci, M., K. V. Cashman, and J. P. Kauahikaua (1999), Textural characterization of the pahoehoe-’a’a transition in Hawaiian basalt, Bulletin of Volcanology, 60(8), 595–609, doi:10.1007/s004450050254.

Polacci, M., P. Papale, and M. Rosi (2001), Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics, Bulletin of Volcanology, 63(2-3), 83–97, doi:10.1007/s004450000123.

Polacci, M., L. Pioli, and M. Rosi (2003), The Plinian phase of the Campanian Ignimbrite eruption (phlegrean fields, Italy): Evidence from density measurements and textural characterization of pumice, Bulletin of Volcanology, 65(6), 418–432, doi:10.1007/s00445-002-0268-4.

Polacci, M., D. R. Baker, L. Mancini, S. Favretto, and R. J. Hill (2009), Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems, Journal of Geophysical Research: Solid Earth, 114(1), 1–14, doi:10.1029/2008JB005672.

Prousevitch, A. A., D. L. Sahagian, and A. T. Anderson (1993), Dynamics of diffusive bubble growth in magmas: isothermal case, Journal of Geophysical Research, 98(B12), doi:10.1029/93jb02027.

Proussevitch, A., and D. Sahagian (2005), Bubbledrive-1: A numerical model of volcanic eruption mechanisms driven by disequilibrium magma degassing, Journal of Volcanology and Geothermal Research, 143(1-3), 89–111, doi:10.1016/j.jvolgeores.2004.09.012.

Proussevitch, A. A., and D. L. Sahagian (1996), Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems, Journal of Geophysical Research: Solid Earth, 101(B8), 17,447–17,455, doi:10.1029/96jb01342.

Prud’homme, R. K., and R. B. Bird (1978), The dilatational properties of suspensions of gas bubbles in incompressible newtonian and non-newtonian fluids, Journal of Non-Newtonian Fluid Mechanics, 3(3), 261–279, doi:10.1016/0377-0257(78)87004-9.

Rosi, M., L. Vezzoli, A. Castelmenzano, and G. Grieco (1999), Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy), Journal of Volcanology and Geothermal Research, 91(2-4), 179–198, doi:10.1016/S0377-0273(99)00035-9.

Rosi, M., P. Landi, M. Polacci, A. Di Muro, and D. Zandomeneghi (2004), Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-B.P. Plinian eruption of Quilotoa Volcano (Ecuador), Bulletin of Volcanology, 66(4), 307–321, doi:10.1007/s00445-003-0312-z.

Rust, A. C., and K. V. Cashman (2007), Multiple origins of obsidian pyroclasts and implications for changes in the dynamics of the 1300 B.P. eruption of Newberry Volcano, USA, Bulletin of Volcanology, 69(8), 825–845, doi:10.1007/s00445-006-0111-4.

Rust, A. C., and M. Manga (2002), Bubble shapes and orientations in low Re simple shear flow, Journal of colloid and interface science, 249(2), 476–480, doi:10.1006/jcis.2002.8292.

Rust, A. C., M. Manga, and K. V. Cashman (2003), Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations, Journal of Volcanology and Geothermal Research, 122(1-2), 111–132, doi:10.1016/S0377-0273(02)00487-0.

Sarkar, K., and W. R. Schowalter (2001), Deformation of a two-dimensional viscous drop in time-periodic extensional flows: analytical treatment, J. Fluid Mech., 436(2001), 207–230, doi:10.1017/S0022112001004013.

Schindelin, J., et al. (2012), Fiji: An open-source platform for biological-image analysis, Nature Methods, 9(7), 676–682, doi:10.1038/nmeth.2019.

Shea, T., B. F. Houghton, L. Gurioli, K. V. Cashman, J. E. Hammer, and B. J. Hobden (2010), Textural studies of vesicles in volcanic rocks: An integrated methodology, Journal of Volcanology and Geothermal Research, 190(3-4), 271–289, doi:10.1016/j.jvolgeores.2009.12.003.

Shields, J. K., H. M. Mader, M. Pistone, L. Caricchi, D. Floess, and B. Putlitz (2014), Strain-induced outgassing of three-phase magmas during simple shear, Journal of Geophysical Research B: Solid Earth, 119(9), 6936–6957, doi:10.1002/2014JB011111.

Smith, R. T., and B. F. Houghton (1995), Vent migration and changing eruptive style during the 1800a Taupo eruption: new evidence from the Hatepe and Rotongaio phreatoplinian ashes, Bulletin of Volcanology, 57(6), 432–439, doi:10.1007/BF00300987.

Sparks, R. S. (1978), The dynamics of bubble formation and growth in magmas: A review and analysis, Journal of Volcanology and Geothermal Research, 3(1-2), 1–37, doi:10.1016/0377-0273(78)90002-1.

Taddeucci, J., and K. H. Wohletz (2001), Temporal evolution of the Minoan eruption ( Santorini , Greece ), as recorded by its Plinian fall deposit and interlayered ash fow beds, Journal of Volcanology and Geothermal Research, 109, 299–317.

Tait, S., R. Thomas, J. Gardner, and C. Jaupart (1998), Constraints on cooling rates and permeabilities of pumice in an explosive eruption jet from colour and magnetic mineralogy, Journal of Volcanology and Geothermal Research, 86(1-4), 79–91, doi:10.1016/S0377-0273(98)00075-4.

Takeda, S., M. Ohashi, O. Kuwano, M. Kameda, and M. Ichihara (2019), Rheological tests of polyurethane foam undergoing vesiculation-deformation solidification as a magma analogue, Journal of Volcanology and Geothermal Research, submitted.

Taya, M., and E. D. Seidel (1981), Void growth in a viscous metal, International Journal of Engineering Science, 19(8), 1083–1094, doi:10.1016/0020-7225(81)90099-9.

Taylor, G. I. (1934), The Formation of Emulsions in Definable Fields of Flow, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 146(858), 501–523.

Thielicke, W., and E. J. Stamhuis (2014), PIVlab âĂŞ Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB, Journal of Open Research Software, 2, 1–10, doi:10.5334/jors.bl.

Thomas, N., C. Jaupart, and S. Vergniolle (1994), On the vesicularity of pumice, Journal of Geophysical Research, 99(B8), doi:10.1029/94jb00650.

Thomas, R. M., and R. S. Sparks (1992), Cooling of tephra during fallout from eruption columns, Bulletin of Volcanology, 54(7), 542–553, doi:10.1007/BF00569939.

Toramaru, A. (1988), Formation of propagation pattern in two-phase flow systems with application to volcanic eruption, Geophys. J., 95, 613–623, doi:10.1111/j.1365-246X.1988.tb06707.x.

Toramaru, A. (1995), Numerical study of nucleation and growth of bubbles in viscous magmas, Journal of Geophysical Research: Solid Earth, 100(B2), 1913–1931, doi:10.1029/94JB02775.

Toramaru, A. (2006), BND ( bubble number density ) decompression rate meter for explosive volcanic eruptions, Journal of Volcanology and Geothermal Research, 154, 303–316, doi:10.1016/j.jvolgeores.2006.03.027. Van Den Berg, H. R., C. A. Ten Seldam, and P. S. Van Der Gulik (1993), Compressible Laminar Flow in a Capillary, Journal of Fluid Mechanics, 246, 1–20, doi:10.1017/S0022112093000011.

Vedeneeva, E. A. (2007a), ДВУМЕРНЫЕ МОДЕЛИТЕЧЕНИЯ МАГМЫ В КАНАЛ Е ВУЛКАНА С УЧЕТОМСЖИМАЕМОСТИ И ТЕНЛОВЫХ ЭФФЕКТОВ, Ph.D. thesis, Moscow State University, Moscow, Russia.

Vedeneeva, E. A. (2007b), Two-dimensional models of magma flows in a volcanic conduit taking the magma compressibility and thermal effects into account, Fluid Dynamics, 42(4), 528–539, doi:10.1007/s10697-007-0056-0.

Vedeneeva, E. A., O. E. Melnik, A. A. Barmin, and R. S. J. Sparks (2005), Viscous dissipation in explosive volcanic flows, Geophysical Research Letters, 32(5), 1–5, doi:10.1029/2004GL020954.

Venerus, D. C. (2006), Laminar capillary flow of compressible viscous fluids, Journal of Fluid Mechanics, 555, 59–80, doi:10.1017/S0022112006008755.

Walker, G. (1980), The Taupo pumice: Product of the most powerful known (ultraplinian) eruption?, Journal of Volcanology and Geothermal Research, 8(1), 69–94, doi:10.1016/0377-0273(80)90008-6.

Walker, G. P. (1981), Characteristics of two phreatoplinian ashes, and their water-flushed origin, Journal of Volcanology and Geothermal Research, 9(4), 395–407, doi:10.1016/0377-0273(81)90046-9.

Walker, G. P., R. F. Heming, and C. J. Wilson (1980), Low-aspect ratio ignimbrites [9], doi:10.1038/283286a0.

Wetzel, E. D., and C. L. Tucker (2001), Droplet deformation in dispersions with unequal viscosities and zero interfacial tension, Journal of Fluid Mechanics, 426(1934), 199–228, doi:10.1017/S0022112000002275.

Wilson, C. J. (1993), Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 343(1668), 205–306, doi:10.1098/rsta.1993.0050.

Wilson, C. J. (2001), The 26.5 ka Oruanui eruption, New Zealand: An introduction and overview, vol. 112, 133–174 pp., doi:10.1016/S0377-0273(01)00239-6.

Wilson, C. J. N. (1985), The Taupo Eruption, New Zealand II. The Taupo Ignimbrite, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 314(1529), 229–310, doi:10.1098/rsta.1985.0020.

Wilson, C. J. N., and G. P. L. Walker (1985), The Taupo Eruption, New Zealand I. General Aspects, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 314(1529), 199–228, doi:10.1098/rsta.1985.0019.

Wilson, L., R. S. J. Sparks, and G. P. L. Walker (1980), Explosive volcanic eruptions – IV. The control of magma properties and conduit geometry on eruption column behaviour, Geophysical Journal International, 63(1), 117–148, doi:10.1111/j.1365-246X.1980.tb02613.x.

Woods, A. W. (1988), The fluid dynamics and thermodynamics of eruption columns, Bulletin of Volcanology, 50(3), 169–193, doi:10.1007/BF01079681.

Wright, H. M. N., J. J. Roberts, and K. V. Cashman (2006), Permeability of anisotropic tube pumice: Model calculations and measurements, Geophysical Research Letters, 33(17), 2–7, doi:10.1029/2006GL027224.

Wright, H. M. N., K. V. Cashman, E. H. Gottesfeld, and J. J. Roberts (2009), Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity, Earth and Planetary Science Letters, 280(1-4), 93–104, doi:10.1016/j.epsl.2009.01.023.

Zhang, Y. (1999), A criterion for the fragmentation of bubbly magma based on brittle failure theory, Nature, 402(6762), 648–650, doi:10.1038/45210.

Zhang, Y., and H. Behrens (2000), H2O diffusion in rhyolitic melts and glasses, Chemical Geology, 169(1-2), 243–262, doi:10.1016/S0009-2541(99)00231-4.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る