リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「パイプ-チャンバー系水あめ噴火実験を通した火山噴火システムの研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

パイプ-チャンバー系水あめ噴火実験を通した火山噴火システムの研究

菅野, 洋 東京大学 DOI:10.15083/0002001895

2021.10.04

概要

身近な材料を用いて, 地球科学的な現象を模擬した実験は, しばしば自然科学に応用できるような新しいアイデアや示唆をもたらす. 本研究では, 室内実験のシステムが, 火山噴火システムと同等の数理システムを持つと考え, 実験における振る舞いや, 物理過程を理解する. そして, 観測や数理モデルからは簡単には予想できないような要素を発見的に探求し, 実験の結果から, 観測記録の解釈や噴火モデルへ示唆を得ることを目的とする.

本研究は, 所属する機関において行なった, 一般向けの水あめ噴火実験から着想を得た,パイプ-チャンバー系水あめ噴火実験の物理を探求する. 本実験では, ガスチャンバーの上部に鉛直にパイプを取り付けた実験装置を用いる. チャンバー内に一定流量のガスを供給すると, パイプ内で水あめとガスの二相流が発生し, 間欠的にガスが噴出する.

まずは, 実験におけるチャンバー内の圧力変動に着目する. チャンバー圧力変動は, ノコギリ波状の特徴を示す. このような波形は火山活動にともなう地盤変動としてストロンボリ式, ブルカノ式, 溶岩ドーム噴火といった様々な周期的噴火現象とともに観測される. 周期的火山噴火システムは, マグマ溜り圧力と火道流の非線形な圧力損失がカップリングするという数理モデルが提案されているが, このようなシステムの振る舞いを室内実験を用いて検討した研究はこれまでなかった. そこで, 本研究では, 実験で見られる物理量を単純なパラメータとして取り扱い, 実験と火山噴火システムは同等の数理構造を持っていることを示した. 実験におけるチャンバー内圧力・パイプ内流れは, その流れのスケールや構造が違うにも関わらず, 火山噴火システムにおけるマグマ溜り内圧力・火道流と対応していることを示した. さらに, 実験において, 装置の構造や供給ガス流量といったパラメータが一定であっても, 自発的にチャンバー圧力振動の周期が乱れていくことを見出した. この結果は, 既存の火山噴火モデルからは予測できないような結果である. このような, 予想外な結果を得られる事こそが, 室内実験を通して, 火山噴火システムを研究する意義であると考えている. 流れの画像解析の結果, 自発的な周期の乱れは, 過去のガス噴出によっ て, 流路の構造が乱されることによって生じると結論づけた. 実際の周期的噴火においては, 過去の噴火による噴出物の再堆積や, 火道の崩壊, マグマヘッドの位置の違いによっ て, 火道内流れの状態が乱されることが, 周期を乱すひとつの要因になると考える.

次に, 実験において, パイプ上端で計測したガス噴出時の空気振動に着目する. 実験において, 流動状態とチャンバー圧力振動が乱れるとき, 空気振動波形もまた乱れることを示した. 一方, ノコギリ波状のチャンバー圧力振動にともなって発生する空気振動には二つの特徴的な周波数ピークがあり, それぞれのピークを励起するメカニズムを特定した. また,低周波帯空気振動の振幅が, チャンバー過剰圧と良い対応関係があることを示した. 空気振動発生メカニズムと, 火山噴火システムにおける現象とを十分に対応させるには至らなかったが, この実験結果を踏まえれば, 地下の圧力 (体積) 変化にともなう地盤変動と対応のある空振シグナルを見出すことができるかも知れない, ということが考えられる.

最後に, 2015年の桜島火山活動について, 地盤変動及び空振, 火口カメラ映像の関係を調べる. 地盤変動には, ノコギリ波状の振動が見られるが, その発生間隔に, 実験で見られたような周期性や, 個々のイベントの関係性を見出すことはできなかった. この解析の主な成果は, 連続的な灰噴火にともなうような, 微弱な空振, またはパルス状空振後続波のエネルギーが, 地盤変動と対応している可能性を示したことにある. この結果は, 空振エネルギーが, 火山活動のモニタリングのパラメータとして有効である可能性を示唆していると考えている.

本研究では, 実験から得られた示唆を踏まえた火山モデルの具体的な改良には至ることができなかったが, 物理過程の異なる実験システムと火山噴火システムが同等の数理構造を持っていると示したこと, 噴火の周期性や, 空振とチャンバー圧力の関係性についての示唆を得られたことは大きな成果であると考えている. これらの結果は, 実際の流体を用いた室内実験ならではの結果である. また, 観測記録に見出した空振と地盤変動の関係についても, 室内実験の結果を踏まえた上で, 観測記録を見直し, 解析した結果, 見出せた結果であると考えている. 以上の結果から, 本実験は, 火山噴火システムを理解する上で, 重要なツールの一つとなると考えている.

この論文で使われている画像

参考文献

Aizawa, K., C. Cimarelli, M. A. Alatorre-Ibargüengoitia, A. Yokoo, D. B. Dingwell, and M. Iguchi (2016), Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan, Earth and Planetary Science Letters, 444, 45–55, doi:10.1016/j.epsl.2016.03.024.

Akagawa, K. (1974), 気液二相流, 253 pp., コロナ社.

Anderson, K., M. Lisowski, and P. Segall (2010), Cyclic ground tilt associated with the 2004- 2008 eruption of Mount St. Helens, Journal of Geophysical Research, 115, B11,201, doi: 10.1029/2009JB007102.

Aoki, Y. (2016), Recent Progress of Volcano Deformation Studies, Bulletin of the Volcanological Society of Japan, 61(2), 311–344.

Azzopardi, B., L. Pioli, and L. Abdulkareem (2014), The properties of large bubbles rising in very viscous liquids in vertical columns, International Journal of Multiphase Flow, 67, 160–173, doi:10.1016/j.ijmultiphaseflow.2014.08.013.

Barmin, A., O. Melnik, and R. Sparks (2002), Periodic behavior in lava dome eruptions, Earth and Planetary Science Letters, 199, 173–184, doi:10.1016/S0012-821X(02)00557-5.

Blackburn, E. A., L. Wilson, and R. S. J. Sparks (1976), Mechanisms and dynamics of strombolian activity, Journal of the Geological Society, 132(4), 429–440, doi:10.1144/gsjgs.132.4.0429.

Capponi, A., J. Taddeucci, P. Scarlato, and D. M. Palladino (2016), Recycled ejecta modulating

Chen, C.-W., H.-F. Huang, S. Hautmann, I. S. Sacks, A. T. Linde, and T. Taira (2018), Resonance oscillations of the Soufrière Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike, Journal of Volcanology and Geothermal Research, 350, 7–17, doi:10.1016/j.jvolgeores.2017.11.020.

Chouet, B., N. Hamisevicz, and T. R. McGetchin (1974), Photoballistics of volcanic jet activity at Stromboli, Italy, Journal of Geophysical Research B: Solid Earth, 79(32), 4961–4976, doi: 10.1029/JB079i032p04961.

Coffey, T. (2008), Soda Pop Fizz-ics, The Physics Teacher, 46(8), 473–476, doi:10.1119/1.2999062.

Costa, A., R. Sparks, G. Macedonio, and O. Melnik (2009), Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions, Earth and Planetary Science Letters, 288(3- 4), 455–462, doi:10.1016/j.epsl.2009.10.006.

Dalton, M. P., G. P. Waite, I. M. Watson, and P. A. Nadeau (2010), Multiparameter quantification of gas release during weak Strombolian eruptions at Pacaya Volcano, Guatemala, Geophysical Research Letters, 37(9), doi:10.1029/2010GL042617.

De’ Michieli Vitturi, M., A. B. Clarke, A. Neri, and B. Voight (2013), Extrusion cycles during dome-building eruptions, Earth and Planetary Science Letters, 371-372, 37–48, doi:10.1016/j. epsl.2013.03.037.

Del Bello, E., S. Lane, M. James, E. Llewellin, J. Taddeucci, P. Scarlato, and A. Capponi (2015), Viscous plugging can enhance and modulate explosivity of strombolian eruptions, Earth and Planetary Science Letters, 423, 210–218, doi:10.1016/j.epsl.2015.04.034.

Delle Donne, D., M. Ripepe, G. Lacanna, G. Tamburello, M. Bitetto, and A. Aiuppa (2016), Gas mass derived by infrasound and UV cameras: Implications for mass flow rate, Journal of Volcanology and Geothermal Research, 325, 169–178, doi:10.1016/j.jvolgeores.2016.06.015.

Den Doelder, C., R. Koopmans, J. Molenaar, and A. Van de Ven (1998), Comparing the wall slip and the constitutive approach for modelling spurt instabilities in polymer melt flows, Journal of Non-Newtonian Fluid Mechanics, 75(1), 25–41, doi:10.1016/S0377-0257(97)00081-5.

Deus, H. M., E. Bolacha, C. Vasconcelos, and P. E. Fonseca (2010), Analogue modelling to understand geological phenomena, in Proceedings of the GeoSciEd VI, January, doi:10.13140/ 2.1.4544.3845.

Divoux, T., V. Vidal, F. Melo, and J. C. Géminard (2008), Acoustic emission associated with the bursting of a gas bubble at the free surface of a non-Newtonian fluid, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(5), 1–7, doi:10.1103/PhysRevE.77.056310.

Dobran, F. (1992), Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79, Journal of Volcanology and Geothermal Research, 49(3-4), 285–311, doi:10.1016/0377-0273(92)90019-A.

Druitt, T. H., et al. (2002), Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat, Geological Society, London, Memoirs, 21, 281–306, doi:10.1144/GSL.MEM.2002.021.01.13.

Fee, D., M. Garcés, M. Patrick, B. Chouet, P. Dawson, and D. Swanson (2010a), Infrasonic harmonic tremor and degassing bursts from Halema’uma’u Crater, Kilauea Volcano, Hawaii,

Fee, D., M. Garces, and A. Steffke (2010b), Infrasound from Tungurahua Volcano 2006-2008: Strombolian to Plinian eruptive activity, Journal of Volcanology and Geothermal Research, 193(1-2), 67–81, doi:10.1016/j.jvolgeores.2010.03.006.

Fee, D., S. R. McNutt, T. M. Lopez, K. M. Arnoult, C. A. Szuberla, and J. V. Olson (2013), Combining local and remote infrasound recordings from the 2009 Redoubt Volcano eruption, Journal of Volcanology and Geothermal Research, 259, 100–114, doi:10.1016/j.jvolgeores. 2011.09.012.

Fee, D., P. Izbekov, K. Kim, A. Yokoo, T. Lopez, F. Prata, R. Kazahaya, H. Nakamichi, and M. Iguchi (2017), Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan, Earth and Planetary Science Letters, 480, 42–52, doi:10.1016/j.epsl.2017.09.043.

Fontaine, F. R., G. Roult, L. Michon, G. Barruol, and A. Di Muro (2014), The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island) from tilt analysis at a single very broadband seismic station Fabrice, Geophysical Research Letters, 41, 2803–2811, doi:10.1002/2014GL059691.

Fujita, E., M. Ukawa, and E. Yamamoto (2004), Subsurface cyclic magma sill expansions in the 2000 Miyakejima volcano eruption: Possibility of two-phase flow oscillation, Journal of Geophysical Research: Solid Earth, 109(B4), doi:10.1029/2003JB002556.

Fukuyama, E. (1988), Saw-Teeth-Shaped Tilt Change Associated with Volcanic Tremor at the Izu-Oshima Volcano, Bulletin of the Volcanological Society of Japan, 33, S128–S135.

Gaudin, D., et al. (2017), Integrating puffing and explosions in a general scheme for Strombolian-style activity, Journal of Geophysical Research: Solid Earth, pp. 1860–1875, doi:10.1002/ 2016JB013707.

Genco, R., and M. Ripepe (2010), Inflation-deflation cycles revealed by tilt and seismic records at Stromboli volcano, Geophysical Research Letters, 37(12), doi:10.1029/2010GL042925.

Gerst, A., M. Hort, R. C. Aster, J. B. Johnson, and P. R. Kyle (2013), The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica-Energies, pressures, seismology, and infrasound, Journal of Geophysical Research: Solid Earth, 118(7), 3318–3340, doi:10.1002/ jgrb.50234.

Goto, A., and J. B. Johnson (2011), Monotonic infrasound and Helmholtz resonance at Volcan Villarrica (Chile), Geophysical Research Letters, 38(6), 1–5, doi:10.1029/2011GL046858.

Gurioli, L., L. Colo’, A. J. Bollasina, A. J. L. Harris, A. Whittington, and M. Ripepe (2014), Dynamics of Strombolian explosions: Inferences from field and laboratory studies of erupted bombs from Stromboli volcano, Journal of Geophysical Research: Solid Earth, 119(1), 319– 345, doi:10.1002/2013JB010355.

Hagerty, M. T., S. Y. Schwartz, M. A. Garcés, and M. Protti (2000), Analysis of seismic and acoustic observations at Arenal Volcano, Costa Rica, 1995-1997, Journal of Volcanology and Geothermal Research, 101(1-2), 27–65, doi:10.1016/S0377-0273(00)00162-1.

Hewitt, G. F., and N. S. Hall-Taylor (1970), Annular two-phase flow, 310 pp., Pergamon Press.

Hotta, K., M. Iguchi, and T. Tameguri (2016a), Rapid dike intrusion into Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground deformation observations, Earth,

Hotta, K., M. Iguchi, T. Ohkura, and K. Yamamoto (2016b), Multiple-pressure-source model for ground inflation during the period of high explosivity at Sakurajima volcano, Japan - Combina- tion analysis of continuous GNSS, tilt and strain data -, Journal of Volcanology and Geothermal Research, 310, 12–25, doi:10.1016/j.jvolgeores.2015.11.017.

Ichihara, M. (2016), Seismic and infrasonic eruption tremors and their relation to magma discharge rate: A case study for sub-Plinian events in the 2011 eruption of Shinmoe-dake, Japan, Journal of Geophysical Research: Solid Earth, pp. 1–18, doi:10.1002/2016JB013246.

Ida, Y. (1996), Cyclic fluid effusion accompanied by pressure change: Implication for volcanic erup- tions and tremor, Geophysical Research Letters, 23(12), 1457–1460, doi:10.1029/96GL01325.

Iga, K., and R. Kimura (2007), Convection driven by collective buoyancy of microbubbles, Fluid Dynamics Research, 39(1-3), 68–97, doi:10.1016/j.fluiddyn.2006.08.003.

Iguchi, M. (2012), Prediction of Volume of Volcanic Ash Ejected from Showa Crater of Sakurajima Volcano, Japan, Disaster Prevention Research Institute Annuals, 55 B, 169–175.

Iguchi, M. (2013), A Method for Monitoring of Discharge Volume of Volcanic Ash by Using Volcanic Tremor, Disaster Prevention Research Institute Annuals, 56, 2–6.

Iguchi, M., H. Yakiwara, T. Tameguri, M. Hendrasto, and J. I. Hirabayashi (2008), Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes, Journal of Volcanology and Geothermal Research, 178(1), 1–9, doi: 10.1016/j.jvolgeores.2007.10.010.

Iguchi, M., A. Yokoo, and T. Tameguri (2010), Intensity of Volcanic Explosions at Showa Crater of Sakurajima Volcano, Disaster Prevention Research Institute Annuals, 53B(53), 233–240.

Iguchi, M., T. Tanegyri, Y. Ohta, S. Ueki, and S. Nakao (2013), Characteristics of Volcanic Activity at Sakurajima Volcano’s Showa Crater During the Period 2006 to 2011, Bulletin of the Volcanological Society of Japan, 58(1), 115–135, doi:10.18940/kazan.58.1_115.

Iguchi, M., H. Nakamichi, T. Tameguri, K. Hotta, and T. Sonoda (2018), Seismicity and Ground Deformation Associated with Fountain Lava at Sakurajima, Disaster Prevention Research Insti- tute Annuals, 61, 2–7.

Ishihara, K. (1990), Pressure sources and induced ground deformation associated with explosive eruptions at an andesitic volcano : Sakurajima volcano, Japan, in Magma Transport and Storage,pp. 335–356, Wiley.

Iverson, R. M., et al. (2006), Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004-05, Nature, 444(7118), 439–443, doi:10.1038/nature05322.

James, M., S. Lane, B. Chouet, and J. Gilbert (2004), Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits, Journal of Volcanology and Geothermal Research, 129(1-3), 61–82, doi:10.1016/S0377-0273(03)00232-4.

James, M. R., S. J. Lane, and B. A. Chouet (2006), Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in low-viscosity magmas, Journal of Geophysical Research, 111, doi:10.1029/2005JB003718.

Jaupart, C., and C. J. Allègre (1991), Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes, Earth and Planetary Science Letters, 102(3-4), 413–429, doi: 10.1016/0012-821X(91)90032-D.roof of a basaltic magma chamber, Journal of Fluid Mechanics, 203, 347, doi:10.1017/ S0022112089001497.

Johnson, J. B. (2003), Generation and propagation of infrasonic airwaves from volcanic ex- plosions, Journal of Volcanology and Geothermal Research, 121(1-2), 1–14, doi:10.1016/ S0377-0273(02)00408-0.

Johnson, J. B., and J. M. Lees (2000), Plugs and chugs - seismic and acoustic observations of degassing explosions at Karymsky, Russia and Sangay, Ecuador, Journal of Volcanology and Geothermal Research, 101(1-2), 67–82, doi:10.1016/S0377-0273(00)00164-5.

Kakac, S., and B. Bon (2008), A Review of two-phase flow dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer, 51(3-4), 399–433, doi:10.1016/j. ijheatmasstransfer.2007.09.026.

Kanno, Y. (2016), 気液互相スラグ流にみられるノコギリ波状圧力変動~火山振動系の理解に向けて, Master Thesis, University of Tokyo, Japan.

Kanno, Y., and M. Ichihara (2018), Sawtooth wave-like pressure changes in a syrup eruption exper- iment: implications for periodic and nonperiodic volcanic oscillations, Bulletin of Volcanology, 80(8), 65, doi:10.1007/s00445-018-1227-z.

Kim, K., and J. M. Lees (2011), Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions, Geophysical Research Letters, 38(6), 2–6, doi:10. 1029/2010GL046615.

Kozono, T., and T. Koyaguchi (2012), Effects of gas escape and crystallization on the complexity of conduit flow dynamics during lava dome eruptions, Journal of Geophysical Research: Solid Earth, 117(8), 1–18, doi:10.1029/2012JB009343.

Kumagai, I., A. Davaille, K. Kurita, and E. Stutzmann (2008), Mantle plumes: Thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space, Geophysical Research Letters, 35(16), 1–5, doi:10.1029/2008GL035079.

Kurita, K., I. Kumagai, and A. Davaille (2008), An Invitation to Kitchen Earth Sciences, an Example of MISO Soup Convection Experiment in Classroom, American Geophysical Union, Fall Meeting 2008, abstract.

Kurokawa, A. (2016), Understanding Oscillation Phenomena Induced by Non-linear Magma Rhe- ology, Ph.D. thesis, University of Tokyo, Japan.

Lacanna, G., and M. Ripepe (2013), Influence of near-source volcano topography on the acous- tic wavefield and implication for source modeling, Journal of Volcanology and Geothermal Research, 250, 9–18, doi:10.1016/j.jvolgeores.2012.10.005.

Lacanna, G., M. Ichihara, M. Iwakuni, M. Takeo, M. Iguchi, and M. Ripepe (2014), Influence of atmospheric structure and topography on infrasonic wave propagation, Journal of Geophysical Research: Solid Earth, 119(4), 2988–3005, doi:10.1002/2013JB010827.

Lane, S. J., J. C. Phillips, and G. a. Ryan (2008), Dome-building eruptions: insights from analogue experiments, Geological Society, London, Special Publications, 307(1), 207–237, doi:10.1144/ SP307.12.volcano, Kamchatka, Russia, Geophysical Journal International, 158(3), 1151–1167, doi:10. 1111/j.1365-246X.2004.02239.x.

Lees, J. M., J. B. Johnson, M. Ruiz, L. Troncoso, and M. Welsh (2008), Reventador Volcano 2005: Eruptive activity inferred from seismo-acoustic observation, Journal of Volcanology and Geothermal Research, 176(1), 179–190, doi:10.1016/j.jvolgeores.2007.10.006.

Lighthill, J. (1978), Waves in Fluids, 504 pp., Cambridge Univ. Press., U. K.

Mader, H. M., M. Manga, and T. Koyaguchi (2004), The role of laboratory experiments in volcanology, Journal of Volcanology and Geothermal Research, 129(1-3), 1–5, doi: 10.1016/S0377-0273(03)00228-2.

Mader, H. M., E. W. Llewellin, and S. P. Mueller (2013), The rheology of two-phase magmas: A review and analysis, Journal of Volcanology and Geothermal Research, 257, 135–158, doi: 10.1016/j.jvolgeores.2013.02.014.

Maeda, I. (2000), Nonlinear visco-elastic volcanic model and its application to the recent eruption of Mt. Unzen, Journal of Volcanology and Geothermal Research, 95(1-4), 35–47, doi:10.1016/ S0377-0273(99)00120-1.

Malkin, A. Y., A. V. Semakov, and V. G. Kulichikhin (2010), Self-organization in the flow of complex fluids (colloid and polymer systems): Part 1: Experimental evidence, Advances in Colloid and Interface Science, 157(1-2), 75–90, doi:10.1016/j.cis.2010.04.002.

Mason, R., A. Starostin, O. Melnik, and R. Sparks (2006), From Vulcanian explosions to sustained explosive eruptions: The role of diffusive mass transfer in conduit flow dynamics, Journal of

Volcanology and Geothermal Research, 153(1-2), 148–165, doi:10.1016/j.jvolgeores.2005.08. 011.

Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophysical Research Letters, 36(8), L08,303, doi:10.1029/2008GL036486.

Melnik, O., and R. S. Sparks (2005), Controls on conduit magma flow dynamics during lava dome building eruptions, Journal of Geophysical Research: Solid Earth, 110(2), 1–21, doi: 10.1029/2004JB003183.

Miwa, T., N. Geshi, and H. Shinohara (2013), Temporal variation in volcanic ash texture during a vulcanian eruption at the sakurajima volcano, Japan, Journal of Volcanology and Geothermal Research, 260, 80–89, doi:10.1016/j.jvolgeores.2013.05.010.

Mujin, M., M. Nakamura, and A. Miyake (2017), Eruption style and crystal size distributions: Crys- tallization of groundmass nanolites in the 2011 Shinmoedake eruption, American Mineralogist, 102(12), 2367–2380, doi:10.2138/am-2017-6052CCBYNCND.

Muramatsu, D., K. Aizawa, A. Yokoo, M. Iguchi, and T. Tameguri (2018), Estimation of Vent Radii from Video Recordings and Infrasound Data Analysis: Implications for Vulcanian Eruptions from Sakurajima Volcano, Japan, Geophysical Research Letters, doi:10.1029/2018GL079898.

Nakanishi, M. (2006), An analysis of unsteady one-dimensional conduit model for lava dome eruption, Ph.D. thesis, The University of Tokyo, Japan.eruptions, Journal of Volcanology and Geothermal Research, 178(1), 46–57, doi:10.1016/j. jvolgeores.2008.01.011.

Nishida, K., and M. Ichihara (2016), Real-time infrasonic monitoring of the eruption at a re- mote island volcano using seismoacoustic cross correlation, Geophysical Journal International, 204(2), 748–752, doi:10.1093/gji/ggv478.

Nishimura, T., M. Ichihara, and S. Ueki (2006), Investigation of the Onikobe geyser, NE Japan, by observing the ground tilt and flow parameters, Earth, Planets and Space, 58(6), e21–e24, doi:10.1186/BF03351967.

Ohminato, T., B. a. Chouet, P. Dawson, and S. Kedar (1998), Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii, Journal of Geophysical Research: Solid Earth, 103(B10), 23,839–23,862, doi: 10.1029/98JB01122.

Ozawa, M., S. Nakanishi, S. Ishigai, Y. Mizuta, and H. Tarui (1979), Flow Instabilities in Boiling Channels : Part 1 Pressure Drop Oscillation, Bulletin of JSME, 22(170), 1113–1118, doi: 10.1299/jsme1958.22.1113.

Patrick, M. R., A. J. L. Harris, M. Ripepe, J. Dehn, D. A. Rothery, and S. Calvari (2007), Strombolian explosive styles and source conditions: insights from thermal (FLIR) video, Bulletin of Volcanology, 69(7), 769–784, doi:10.1007/s00445-006-0107-0.

Pioli, L., B. Azzopardi, C. Bonadonna, M. Brunet, and A. Kurokawa (2017), Outgassing and eruption of basaltic magmas: The effect of conduit geometry, Geology, 45(8), G38,787.1, doi:10.1130/G38787.1.

Ripepe, M., E. Marchetti, C. Bonadonna, A. J. L. Harris, L. Pioli, and G. Ulivieri (2010a), Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile, Geophysical Research Letters, 37(15), doi:10.1029/2010GL043516.

Ripepe, M., S. De Angelis, G. Lacanna, and B. Voight (2010b), Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat, Geophysical Research Letters, 37(19), n/a–n/a, doi:10.1029/2010GL042557.

Sakai, T., H. Yamasato, and K. Uhira (1996), Infrasound Accompanying C-type Tremor at Sakurajima Volcano, Bulletin of the Volcanological Society of Japan, 41, 181–185, doi: 10.18940/kazan.41.4_181.

Sánchez, C., B. Álvarez, F. Melo, and V. Vidal (2014), Experimental modeling of infrasound emission from slug bursting on volcanoes, Geophysical Research Letters, 41(19), 6705–6711, doi:10.1002/2014GL061068.

Scott, D. R., D. J. Stevenson, and J. A. Whitehead (1986), Observations of solitary waves in a viscously deformable pipe, Nature, 319(6056), 759–761, doi:10.1038/319759a0.

Spiel, D. E. (1992), Acoustical Measurements of Air Bubbles Bursting at a Water Surface: Bursting Bubbles as Helmholtz Resonators, Journal of Geophysical Research, 97(C7), 11,443–11,452, doi:10.1029/92JC00982.

Suzuki, Y. J., T. Koyaguchi, M. Ogawa, and I. Hachisu (2005), A numerical study of turbulent mix- ing in eruption clouds using a three-dimensional fluid dynamics model, Journal of Geophysical Research: Solid Earth, 110(8), 1–18, doi:10.1029/2004JB003460.

Taitel, Y., D. Bornea, and a. E. Dukler (1980), Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AIChE Journal, 26(3), 345–354, doi:10.1002/aic.690260304.

Takeo, M., Y. Maehara, M. Ichihara, T. Ohminato, R. Kamata, and J. Oikawa (2013), Ground deformation cycles in a magma-effusive stage, and sub-Plinian and Vulcanian eruptions at Kirishima volcanoes, Japan, Journal of Geophysical Research: Solid Earth, 118(9), 4758– 4773, doi:10.1002/jgrb.50278.

Takeuchi, S., S. Nakashima, A. Tomiya, and H. Shinohara (2005), Experimental constraints on the low gas permeability of vesicular magma during decompression, Geophysical Research Letters, 32(10), 1–5, doi:10.1029/2005GL022491.

Tamura, Y., T. Sato, M. Ooe, and M. Ishiguro (1991), A procedure for tidal analysis with a Bayesian information criterion, Geophysical Journal International, 104(3), 507–516, doi:10. 1111/j.1365-246X.1991.tb05697.x.

Tateo, Y., and M. Iguchi (2009), Ground Deformation Associated with BL-type Earthquake Swarms at Sakurajima Volcano, Bulletin of the Volcanological Society of Japan, 54(4), 175–186.

Ukawa, M., E. Fujita, E. Yamamoto, Y. Okada, and M. Kikuchi (2000), The 2000 Miyakejima eruption: Crustal deformation and earthquakes observed by the NIED Miyakejima observation network, Earth, Planets and Space, 52(8), xix–xxvi, doi:10.1186/BF03351659.

Vergniolle, S., and G. Brandeis (1996), Strombolian explosions: 1. A large bubble breaking at the surface of a lava column as a source of sound, Journal of Geophysical Research, 101(B9), 20,433, doi:10.1029/96JB01178.

Vergniolle, S., and C. Jaupart (1986), Separated two-phase flow and basaltic eruptions, Journal of Geophysical Research: Solid Earth, 91(B12), 12,842–12,860, doi:10.1029/JB091iB12p12842.

Vergniolle, S., G. Brandeis, and J.-C. Mareschal (1996), Strombolian explosions: 2. Eruption dynamics determined from acoustic measurements, Journal of Geophysical Research: Solid Earth, 101(B9), 20,449–20,466, doi:10.1029/96JB01925.

Vidal, V., J. C. Géminard, T. Divoux, and F. Melo (2006), Acoustic signal associated with the bursting of a soap film which initially closes an overpressurized cavity: Experiment and theory, European Physical Journal B, 54(3), 321–339, doi:10.1140/epjb/e2006-00450-0.

Vidal, V., M. Ripepe, T. Divoux, D. Legrand, J. C. Géminard, and F. Melo (2010), Dynamics of soap bubble bursting and its implications to volcano acoustics, Geophysical Research Letters, 37(7), 1–5, doi:10.1029/2009GL042360.

Voight, B., R. P. Hoblitt, A. B. Clarke, A. B. Lockhart, A. D. Miller, L. Lynch, and J. McMahon (1998), Remarkable cyclic ground deformation monitored in real-time on Montserrat, and its use in eruption forecasting, Geophysical Research Letters, 25(18), 3405–3408, doi:10.1029/ 98GL01160.

Wallis, G. B. (1969), One-dimensional two-phase flow, 408 pp., McGraw-Hill, New York.

Whitehead, J. A., and K. R. Helfrich (1991), Instability of flow with temperature-dependent viscosity: A model of magma dynamics, Journal of Geophysical Research: Solid Earth, 96(B3), 4145–4155, doi:10.1029/90JB02342.

Wylie, J. J. (1999), Instability of Magma Flow from Volatile-Dependent Viscosity, Science, 285(5435), 1883–1885, doi:10.1126/science.285.5435.1883.

Yamada, T., H. Aoyama, T. Nishimura, M. Iguchi, and M. Hendrasto (2017), Volcanic eruption volume flux estimations from very long period infrasound signals, Geophysical Research Letters, 44(1), 143–151, doi:10.1002/2016GL071047.

Yamada, T., H. Aoyama, and H. Ueda (2018), Relationship between infrasound-derived and buoyancy-derived eruption plume volume estimates, Bulletin of Volcanology, 80(9), doi:10. 1007/s00445-018-1244-y.

Yasui, M., M. Takahashi, J. Shimada, D. Miki, and K. Ishihara (2013), Comparative Study of Proximal Eruptive Events in the Large-scale Eruptions of Sakurajima Volcano: An-ei Eruption vs. Taisho Eruption, Bulletin of the Volcanology Society of Japan, 58(1), 59–76, doi:10.18940/ kazan.58.1_59.

Yokoo, A. (2012), Infrasound Array Observation at Sakurajima Volcano, Disaster Prevention Research Institute Annuals, 55(B), 3–6.

Yokoo, A., T. Tameguri, and M. Iguchi (2009), Swelling of a lava plug associated with a Vulcanian eruption at Sakurajima Volcano, Japan, as revealed by infrasound record: Case study of the eruption on January 2, 2007, Bulletin of Volcanology, 71(6), 619–630, doi: 10.1007/s00445-008-0247-5.

Yokoo, A., Y. J. Suzuki, and M. Iguchi (2014), Dual Infrasound Sources from a Vulcanian Eruption of Sakurajima Volcano Inferred from Cross-Array Observation, Seismological Research Letters, 85(6), 1212–1222, doi:10.1785/0220140047.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る