リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Data-driven identification and classification of nonlinear aging patterns reveals the landscape of associations between DNA methylation and aging」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Data-driven identification and classification of nonlinear aging patterns reveals the landscape of associations between DNA methylation and aging

Okada, Daigo Cheng, Jian Hao Zheng, Cheng Kumaki, Tatsuro Yamada, Ryo 京都大学 DOI:10.1186/s40246-023-00453-z

2023

概要

[Background] Aging affects the incidence of diseases such as cancer and dementia, so the development of biomarkers for aging is an important research topic in medical science. While such biomarkers have been mainly identified based on the assumption of a linear relationship between phenotypic parameters, including molecular markers, and chronological age, numerous nonlinear changes between markers and aging have been identified. However, the overall landscape of the patterns in nonlinear changes that exist in aging is unknown.

[Result] We propose a novel computational method, Data-driven Identification and Classification of Nonlinear Aging Patterns (DICNAP), that is based on functional data analysis to identify biomarkers for aging and potential patterns of change during aging in a data-driven manner. We applied the proposed method to large-scale, public DNA methylation data to explore the potential patterns of age-related changes in methylation intensity. The results showed that not only linear, but also nonlinear changes in DNA methylation patterns exist. A monotonous demethylation pattern during aging, with its rate decreasing at around age 60, was identified as the candidate stable nonlinear pattern. We also analyzed the age-related changes in methylation variability. The results showed that the variability of methylation intensity tends to increase with age at age-associated sites. The representative variability pattern is a monotonically increasing pattern that accelerates after middle age.

[Conclusion] DICNAP was able to identify the potential patterns of the changes in the landscape of DNA methylation during aging. It contributes to an improvement in our theoretical understanding of the aging process.

この論文で使われている画像

参考文献

1. Muss HB, Smitherman A, Wood WA, Nyrop K, Tuchman S, Randhawa PK, Entwistle AR, Mitin N, Shachar SS. p16 a biomarker of aging and tolerance for cancer therapy. Transl Cancer Res. 2020;9(9):5732.

2. Galkin F, Mamoshina P, Aliper A, de Magalhães JP, Gladyshev VN, Zhavoronkov A. Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities. Ageing Res Rev. 2020;60: 101050.

3. Kudryashova KS, Burka K, Kulaga AY, Vorobyeva NS, Kennedy BK. Aging biomarkers: from functional tests to multi-omics approaches. Proteomics. 2020;20(5–6):1900408.

4. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22(17):741–52.

5. Luu J, Palczewski K. Human aging and disease: lessons from age-related macular degeneration. Proc Natl Acad Sci. 2018;115(12):2866–72.

6. Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Losada PM, Berdnik D, Keller A, Verghese J, et al. Undulating changes in human plasma proteome profles across the lifespan. Nat Med. 2019;25(12):1843–50.

7. Fehlmann T, Lehallier B, Schaum N, Hahn O, Kahraman M, Li Y, Grammes N, Gefers L, Backes C, Balling R, et al. Common diseases alter the physiological age-related blood microrna profle. Nat Commun. 2020;11(1):1–14.

8. Ren X, Kuan P-F. Negative binomial additive model for rna-seq data analysis. BMC Bioinform. 2020;21(1):1–15.

9. Shavlakadze T, Morris M, Fang J, Wang SX, Zhu J, Zhou W, Herman WT, Mondragon-Gonzalez R, Roma G, Glass DJ. Age-related gene expression signature in rats demonstrate early, late, and linear transcriptional changes from multiple tissues. Cell Rep. 2019;28(12):3263–73.

10. Vershinina O, Bacalini M, Zaikin A, Franceschi C, Ivanchenko M. Disentangling age-dependent dna methylation: deterministic, stochastic, and nonlinear. Sci Rep. 2021;11(1):1–12.

11. Sørensen H, Goldsmith J, Sangalli LM. An introduction with medical applications to functional data analysis. Stat Med. 2013;32(30):5222–40.

12. Johansson Å, Enroth S, Gyllensten U. Continuous aging of the human dna methylome throughout the human lifespan. PLoS ONE. 2013;8(6):67378.

13. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan J-B, Gao Y, et al. Genome-wide methylation profles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.

14. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC. Detecting novel associations in large data sets. Science. 2011;334(6062):1518–24.

15. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57(1):289–300.

16. Yusipov I, Bacalini MG, Kalyakulina A, Krivonosov M, Pirazzini C, Gensous N, Ravaioli F, Milazzo M, Giuliani C, Vedunova M, et al. Age-related dna methylation changes are sex-specifc: a comprehensive assessment. Aging (Albany NY). 2020;12(23):24057.

17. Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, Collino S, et al. Methylation of elovl 2 gene as a new epigenetic marker of age. Aging Cell. 2012;11(6):1132–4.

18. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel K-H, Erbel R, Mühleisen TW, et al. Aging of blood can be tracked by dna methylation changes at just three cpg sites. Genome Biol. 2014;15(2):1–12.

19. Horvath S, Raj K. Dna methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84.

20. Horvath S. Dna methylation age of human tissues and cell types. Genome Biol. 2013;14(10):1–20.

21. Fernández AF, Bayón GF, Urdinguio RG, Toraño EG, García MG, Carella A, Petrus-Reurer S, Ferrero C, Martinez-Camblor P, Cubillo I, et al. H3k4me1 marks dna regions hypomethylated during aging in human stem and diferentiated cells. Genome Res. 2015;25(1):27–40.

22. Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, Suchiman HED, Slagboom PE, Boomsma DI, Heijmans BT. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11(4):694–703.

23. Slieker RC, van Iterson M, Luijk R, Beekman M, Zhernakova DV, Moed MH, Mei H, Van Galen M, Deelen P, Bonder MJ, et al. Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biol. 2016;17(1):1–13.

24. Hyppönen E, Mulugeta A, Zhou A, Santhanakrishnan VK. A data-driven approach for studying the role of body mass in multiple diseases: a phenome-wide registry-based case-control study in the uk biobank. Lancet Digital Health. 2019;1(3):116–26.

25. Okada D, Cheng JH, Zheng C, Yamada R. Data-driven comparison of multiple high-dimensional single-cell expression profles. J Hum Genet. 2022;67(4):215–21.

26. Kosvyra A, Maramis C, Chouvarda I. A data-driven approach to build a predictive model of cancer patients’ disease outcome by utilizing coexpression networks. Comput Biol Med. 2020;125: 103971.

27. Unnikrishnan A, Hadad N, Masser DR, Jackson J, Freeman WM, Richardson A. Revisiting the genomic hypomethylation hypothesis of aging. Ann N Y Acad Sci. 2018;1418(1):69–79.

28. Tomasetti C, Poling J, Roberts NJ, London NR, Pittman ME, Hafner MC, Rizzo A, Baras A, Karim B, Kim A, et al. Cell division rates decrease with age, providing a potential explanation for the age-dependent deceleration in cancer incidence. Proc Natl Acad Sci. 2019;116(41):20482–8.

29. Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams PD. Dna methylation clocks in aging: categories, causes, and consequences. Mol Cell. 2018;71(6):882–95.

30. Okada D, Zheng C, Cheng JH. Mathematical model for the relationship between single-cell and bulk gene expression to clarify the interpretation of bulk gene expression data. Comput Struct Biotechnol J. 2022;20:4850–9.

31. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. Dna methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13(1):1–16.

32. Schmidt M, Maié T, Dahl E, Costa IG, Wagner W. Deconvolution of cellular subsets in human tissue based on targeted dna methylation analysis at individual cpg sites. BMC Biol. 2020;18(1):1–13.

33. Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T, Luo Y, Beynor JI, Baglaenko Y, Suliman S, Price AL, et al. Single-cell eqtl models reveal dynamic t cell state dependence of disease loci. Nature. 2022;606(7912):120–8.

34. Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG, Andersen S, Lu Q, Rowson A, Taylor TR, Clarke L, et al. Single-cell eqtl mapping identifes cell type-specifc genetic control of autoimmune disease. Science. 2022;376(6589):3041.

35. Okada D, Nakamura N, Setoh K, Kawaguchi T, Higasa K, Tabara Y, Matsuda F, Yamada R. Genome-wide association study of individual diferences of human lymphocyte profles using large-scale cytometry data. J Hum Genet. 2021;66(6):557–67.

36. Okada D, Zheng C, Cheng JH, Yamada R. Cell population-based framework of genetic epidemiology in the single-cell omics era. BioEssays. 2022;44(1):2100118.

37. Aryee MJ, Jafe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minf: a fexible and comprehensive bioconductor package for the analysis of infnium dna methylation microarrays. Bioinformatics. 2014;30(10):1363–9.

38. Maechler M. Diptest: Hartigan’s Dip Test Statistic for Unimodality - Corrected. 2016. R package version 0.75-7. https://CRAN.R-project.org/packa ge=diptest

39. Carroll C, Gajardo A, Chen Y, Dai X, Fan J, Hadjipantelis PZ, Han K, Ji H, Mueller H-G, Wang J-L. Fdapace: Functional Data Analysis and Empirical Dynamics. 2021. R package version 0.5.6. https://CRAN.R-project.org/ package=fdapace

40. Mouselimis L. ClusterR: Gaussian Mixture Models, K-Means, Mini-BatchKmeans, K-Medoids and Afnity Propagation Clustering. 2022. R package version 1.2.6. https://CRAN.R-project.org/package=ClusterR

41. Pham D, Dimov S, Nguyen C. Selection of k in k-means clustering. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004. https://doi.org/10.1243/09544 0605X8298.

42. Wang J, Liao Y. WebGestaltR: Gene Set Analysis Toolkit WebGestaltR. 2020. R package version 0.4.4. https://CRAN.R-project.org/package=WebGe staltR

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る