リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「C-type lectin receptor Dectin-1 regulates the balance of mouse intestinal microbiota」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

C-type lectin receptor Dectin-1 regulates the balance of mouse intestinal microbiota

神谷, 知憲 東京大学 DOI:10.15083/0002001697

2021.09.08

概要

【研究背景と目的】
腸管にはウィルスや真菌、細菌などの無数の生物が共生しており、宿主と相互に作用し共生している。これら共生生物は宿主の免疫システムと密接な関係にあり、お互いを制御している。近年、腸内に共生する細菌の働きが注目されており、腸管のみならず全身性に影響があるという報告もある。このことから、腸内細菌叢を含む腸管恒常性の破綻は身体に重篤な影響をもたらし、様々な疾患の発病につながっている。腸内菌叢バランスの破綻、即ちDysbiosisを防ぐシステムが幾つか存在する中で、近年の研究により、粘膜免疫系、とりわけ自然免疫受容体がそれらに対しての制御機構の一つとして解析が進められ、その役割が期待されている。

Dectin-1は自然免疫受容体の一種であるC型レクチン受容体ファミリー分子の一つである。Dectin-1はβ-glucanの受容体であり、細胞内領域にITAM(Immunoreceptor Tyrosine-based Activation Motif)を有する。ITAMによって最終的にNF-κB誘導され、炎症性サイトカイン、別の経路から活性酸素が誘導されることで、真菌感染に対して防御的に働くことが知られている。また、古くからβ-glucanは酵母やキノコから多く摂取され、一部の健康食品として販売され、腸や身体に有益な効果をもたらすことが知られている一方で、β-glucanが腸管免疫系の活性化に働くことが最新の研究により報告されている。しかし、β-glucan、またはDectin-1の腸管恒常性、腸管免疫系への効果のメカニズムは未だ解明されていない。本研究ではDectin-1を介したβ−glucanの腸管恒常性維持を制御するメカニズムについて解析を行った。

【結果と考察】
Dectin-1欠損マウスでの腸内細菌叢、及び腸管免疫系の変化
Dectin-1の大腸免疫細胞上での発現を解析した結果、骨髄由来の細胞に発現していることが確認された。そして、Dectin-1の欠損マウスを用いることにより、Dectin-1の腸管免疫系での働きを確認した。デキストラン硫酸ナトリウム(DSS)により大腸炎を誘導した結果、野生型マウスに比べDectin-1欠損マウスでは大腸炎が抑制され、炎症を抑制する制御性T細胞がDectin-1欠損マウスにて増加していることが明らかとなった。制御性T細胞増殖の原因を解明するため、腸管免疫系に影響を及ぼすことが報告されていることから、腸内細菌叢の同定を試みた。糞便中の16SrDNAを次世代シーケンサーにより解析した結果、Dectin-1欠損マウスの糞便中ではLactobacillus murinus14221株(L. murinus)の大幅な増加が確認された。この菌株を無菌マウスにノトバイオードすると、大腸粘膜固有層にて制御性T細胞が増加していた。これらの結果から、Dectin-1欠損マウスにて増殖したL. murinusが抑制性T細胞を誘導し、腸炎を抑制することが明らかとなった。

L. murinus制御メカニズム
次にDectin-1がどのようにL. murinusを制御しているかを解析した。上皮細胞から産生される抗菌タンパクの発現に着目し、Dectin-1欠損マウスの大腸上皮細胞に発現する抗菌タンパクを測定した結果、抗菌ペプチドS100A8遺伝子の発現量が減少していることがわかった。そして、S100A8はS100A9とヘテロダイマー形成することで抗菌活性を示し、L. murinusの増殖を抑制することがinvitroの試験により明らかとなった。Dectin-1の下流では種々のサイトカインの産生が知られていることから、腸管におけるDectin-1発現細胞へリガンドであるβ-glucanの刺激を加えると、IL-17Fを誘導することが明らかとなった。さらに、IL-17FはDectin-1の粘膜固有層にて発現量、及び産生量が低下していることが確認された。

そして、種々のサイトカインがS100A8を誘導するという報告から、invitro試験における腸管上皮細胞への抗菌タンパク誘導確認試験を実施した。結果、IL-22、IL-23、そしてIL-17Fが大腸上皮細胞の初代培養試験にてS100A8の発現を誘導した。さらに、IL-17Fを欠損させたマウスでは大腸上皮細胞におけるS100A8の発現が低下し、糞便中のL. murinusの存在量が増加していることが明らかとなった。Dectin-1、IL-17F、S100A8の関係性を示す実験として、腸管骨髄由来細胞をβ-glucanで刺激し、その培養上清と大腸上皮細胞とをさらに共培養しS100A8の発現を測定した。結果、Dectin-1、及びIL-17F欠損マウス由来の腸管骨髄由来細胞ではS100A8の発現が低下していた。これらのことから、腸管骨髄由来細胞に発現するDectin-1を介してIL-17Fの産生が誘導され、大腸上皮細胞のS100A8の産生が促進される。そしてS100A8/S100A9によりL. murinusの増殖が制御されていることが明らかとなった。この結果はC型レクチン受容体による腸内細菌叢制御機構を初めて明らかにするものであり、腸管恒常性維持システムの解明に繋がるものと推察される。

経口摂取β-glucanによる腸管恒常性維持機構
腸管には様々な物質や生物由来のβ-glucanが存在する。Dectin-1が腸管免疫系制御に働くことから、β-glucanの由来を探索することで、寄与が高いβ-glucanを調整することで腸管恒常性を制御する可能性を期待した。β-glucan合成酵素を有する細菌や腸内細菌が存在することから、その細胞壁表面をβ-glucan認識タンパクにて標識したが、いずれもβ-glucanを検出することはできず、また無菌マウスと通常飼育マウスのS100A8発現細胞に違いがないことから、細菌由来のβ-glucanはこの制御機構に働かないことが判明した。通常マウス飼料には酵母が多量に含まれており、これはヒトがパンやキノコを食しβ-glucanを経口摂取することと同義である。そこで、食物に含まれるβ-glucanについて検討するため、β-glucanを含まない飼料にてマウスを育成した。その結果、S100A8の発現低下、L. murinusの増加、さらにDectin-1欠損マウスと同様にDSS誘導大腸炎が抑制されることが明らかとなった。

上記の結果を総合し、経口摂取されたβ-glucanは腸管骨髄由来細胞に発現するDectin-1を介してIL-17Fを誘導し、大腸上皮細胞のS100A8の産生を促すことが示された。そして、S100A8/S100A9によりL. murinusの増殖が制御され、Dectin-1欠損マウスでは制御性T細胞が増殖し大腸炎を抑制することが明らかとなった。経口摂取されるβ-glucanを制御することで、腸管恒常性を維持できるメカニズムが明らかとなった。これは食物による免疫システムの制御メカニズムを示唆するものであり、食品による健康増進が証明された。

この論文で使われている画像

参考文献

[1] C. Tang et al., “Inhibition of dectin-1 signaling ameliorates colitis by inducing lactobacillus-mediated regulatory T cell expansion in the intestine,” Cell Host Microbe, vol. 18, no. 2, pp. 183–197, 2015.

[2] J. A. Sanford and R. L. Gallo, “Functions of the skin microbiota in health and disease,” Semin. Immunol., vol. 25, no. 5, pp. 370–377, 2013.

[3] E. Kernbauer, Y. Ding, and K. Cadwell, “An enteric virus can replace the beneficial function of commensal bacteria,” Nature, vol. 516, no. 7529, pp. 94–98, Nov. 2014.

[4] B. S. Ramakrishna, “Role of the gut microbiota in human nutrition and metabolism,” J. Gastroenterol. Hepatol., vol. 28, pp. 9–17, 2013.

[5] A. Mosca, M. Leclerc, and J. P. Hugot, “Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?,” Front. Microbiol., vol. 7, no. MAR, pp. 1–12, Mar. 2016.

[6] C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight, “Diversity, stability and resilience of the human gut microbiota,” Nature, vol. 489, no. 7415, pp. 220–230, 2012.

[7] K. Atarashi et al., “Induction of colonic regulatory T cells by indigenous Clostridium species,” Science (80-. )., vol. 331, no. 6015, pp. 337–341, 2011.

[8] Y. Furusawa et al., “Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells,” Nature, vol. 504, no. 7480, pp. 446–450, 2013.

[9] P. M. Smith et al., “The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis,” Science (80-. )., vol. 341, no. 6145, pp. 569–573, Aug. 2013.

[10] I. Kimura et al., “The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43,” Nat. Commun., vol. 4, no. May, pp. 1–12, 2013.

[11] I. I. Ivanov et al., “Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009.

[12] Y. Goto et al., “Segmented Filamentous Bacteria Antigens Presented by Intestinal Dendritic Cells Drive Mucosal Th17 Cell Differentiation,” Immunity, vol. 40, no. 4, pp. 594–607, Apr. 2014.

[13] T. Sano et al., “An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses,” Cell, vol. 163, no. 2, pp. 381–393, 2015.

[14] Y. Goto, T. Obata, and K. Jun, “Innate lymphoid cells regulate intestinal epithelial cell glycosylation,” Science (80-. )., vol. 345, no. 6202, pp. 1310–1323, 2014.

[15] T. Kawashima et al., “Double-Stranded RNA of Intestinal Commensal but Not Pathogenic Bacteria Triggers Production of Protective Interferon-β,” Immunity, vol. 38, no. 6, pp. 1187–1197, 2013.

[16] K. Khazaie et al., “Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid,” Proc. Natl. Acad. Sci., vol. 109, no. 26, pp. 10462–10467, 2012.

[17] M. Mohamadzadeh et al., “Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid,” Proc. Natl. Acad. Sci., vol. 108, no. Supplement_1, pp. 4623–4630, Mar. 2011.

[18] S. Yang, G. Reid, J. R. G. Challis, S. O. Kim, G. B. Gloor, and A. D. Bocking, “Is There a Role for Probiotics in the Prevention of Preterm Birth?,” Front. Immunol., vol. 6, no. February, pp. 1–8, 2015.

[19] Y. Sun et al., “Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice,” Gastroenterology, vol. 144, no. 7, pp. 1478–1487, 2013.

[20] A. Evrensel and M. E. Ceylan, “The gut-brain axis: The missing link in depression,” Clin. Psychopharmacol. Neurosci., vol. 13, no. 3, pp. 239– 244, 2015.

[21] H. Jiang et al., “Altered fecal microbiota composition in patients with major depressive disorder,” Brain. Behav. Immun., vol. 48, pp. 186–194, 2015.

[22] T. Higuchi, H. Hayashi, and K. Abe, “Exchange of glutamate and gammaaminobutyrate in a Lactobacillus strain.,” J. Bacteriol., vol. 179, no. 10, pp. 3362–4, May 1997.

[23] E. Barrett, R. P. Ross, P. W. O’Toole, G. F. Fitzgerald, and C. Stanton, “γAminobutyric acid production by culturable bacteria from the human intestine,” J. Appl. Microbiol., vol. 113, no. 2, pp. 411–417, 2012.

[24] J. K. Kolls, P. B. McCray, and Y. R. Chan, “Cytokine-mediated regulation of antimicrobial proteins,” Nat. Rev. Immunol., vol. 8, no. 11, pp. 829–835, Nov. 2008.

[25] L. R. Muniz, C. Knosp, and G. Yeretssian, “Intestinal antimicrobial peptides during homeostasis, infection, and disease,” Front. Immunol., vol. 3, no. OCT, pp. 1–13, 2012.

[26] K. Suzuki et al., “Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut,” Proc. Natl. Acad. Sci., vol. 101, no. 7, pp. 1981– 1986, 2004.

[27] K. Masahata et al., “Generation of colonic IgA-secreting cells in the caecal patch,” Nat. Commun., vol. 5, p. 3704, 2014.

[28] L. M. Loonen et al., “REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum,” Mucosal Immunol., vol. 7, no. 4, pp. 939–47, Dec. 2013.

[29] N. H. Salzman et al., “Enteric defensins are essential regulators of intestinal microbial ecology,” Nat. Immunol., vol. 11, no. 1, pp. 76–83, 2010.

[30] J. Wehkamp et al., “Reduced Paneth cell -defensins in ileal Crohn’s disease,” Proc. Natl. Acad. Sci., vol. 102, no. 50, pp. 18129–18134, Dec. 2005.

[31] L. N. Y. Chow et al., “Human cathelicidin LL-37-derived peptide IG-19 confers protection in a murine model of collagen-induced arthritis,” Mol. Immunol., vol. 57, no. 2, pp. 86–92, 2014.

[32] R. Dziarski and D. Gupta, “The peptidoglycan recognition proteins (PGRPs),” Genome Biol., vol. 7, no. 8, p. 232, 2006.

[33] S. Saha et al., “Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ,” Cell Host Microbe, vol. 8, no. 2, pp. 147–162, 2010.

[34] P. G. Sohnle, M. J. Hunter, B. Hahn, and W. J. Chazin, “Zinc-Reversible Antimicrobial Activity of Recombinant Calprotectin (Migration Inhibitory Factor–Related Proteins 8 and 14),” J. Infect. Dis., vol. 182, no. 4, pp. 1272–1275, 2000.

[35] V. E. Diaz-Ochoa, S. Jellbauer, S. Klaus, and M. Raffatellu, “Transition metal ions at the crossroads of mucosal immunity and microbial pathogenesis,” Front. Cell. Infect. Microbiol., vol. 4, no. January, pp. 1–10, 2014.

[36] S. Mukherjee and L. V. Hooper, “Antimicrobial Defense of the Intestine,” Immunity, vol. 42, no. 1, pp. 28–39, 2015.

[37] Y. Zhang, W. Lu, and M. Hong, “The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption,” Biochemistry, vol. 49, no. 45, pp. 9770–9782, 2010.

[38] S. Mukherjee et al., “Antibacterial membrane attack by a pore-forming intestinal C-type lectin,” Nature, vol. 505, no. 7481, pp. 103–107, 2014.

[39] Y. Lai and R. L. Gallo, “AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense,” Trends Immunol., vol. 30, no. 3, pp. 131–141, 2009.

[40] B. R. E. A. Dixon, J. N. Radin, M. B. Piazuelo, D. C. Contreras, and H. M. S. Algood, “IL-17a and IL-22 Induce Expression of Antimicrobials in Gastrointestinal Epithelial Cells and May Contribute to Epithelial Cell Defense against Helicobacter pylori,” PLoS One, vol. 11, no. 2, p. e0148514, Feb. 2016.

[41] H. F. Farin et al., “Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ,” J. Exp. Med., vol. 211, no. 7, pp. 1393–1405, 2014.

[42] M. Bando et al., “Interleukin-1α regulates antimicrobial peptide expression in human keratinocytes,” Immunol. Cell Biol., vol. 85, no. 7, pp. 532–537, 2007.

[43] C. L. Zindl et al., “IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis,” Proc. Natl. Acad. Sci., vol. 110, no. 31, pp. 12768–12773, 2013.

[44] S. C. Liang et al., “Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides,” J. Exp. Med., vol. 203, no. 10, pp. 2271–2279, 2006.

[45] A. Li et al., “IL-22 Up-Regulates β-Defensin-2 Expression in Human Alveolar Epithelium via STAT3 but Not NF-κB Signaling Pathway,” Inflammation, vol. 38, no. 3, pp. 1191–1200, 2015.

[46] X. Song et al., “IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens,” Nat. Immunol., vol. 12, no. 12, pp. 1151–1158, 2011.

[47] T. A. N. Pham et al., “Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen,” Cell Host Microbe, vol. 16, no. 4, pp. 504–516, 2014.

[48] S. L. Sanos et al., “RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+cells,” Nat. Immunol., vol. 10, no. 1, pp. 83–91, 2009.

[49] J. B. Cowland, O. E. Sorensen, M. Sehested, and N. Borregaard, “Neutrophil Gelatinase-Associated Lipocalin Is Up-Regulated in Human Epithelial Cells by IL-1 , but Not by TNF- ,” J. Immunol., vol. 171, no. 12, pp. 6630–6639, 2003.

[50] J. H. Cox et al., “Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice,” Mucosal Immunol., vol. 5, no. 1, pp. 99–109, 2012.

[51] M. Raetz et al., “Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-γ-dependent elimination of Paneth cells,” Nat. Immunol., vol. 14, no. 2, pp. 136–142, Feb. 2013.

[52] H. Ishigame et al., “Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses,” Immunity, vol. 30, no. 1, pp. 108–119, 2009.

[53] W. Jin and C. Dong, “IL-17 cytokines in immunity and inflammation,” Emerg. Microbes Infect., vol. 2, no. 000, p. 0, 2013.

[54] Y. Iwakura, H. Ishigame, S. Saijo, and S. Nakae, “Functional Specialization of Interleukin-17 Family Members,” Immunity, vol. 34, no. 2, pp. 149–162, 2011.

[55] M. Bosmann et al., “MyD88-dependent production of IL-17F is modulated by the anaphylatoxin C5a via the Akt signaling pathway,” FASEB J., vol. 25, no. 12, pp. 4222–4232, 2011.

[56] Y. K. Kim, J. S. Shin, and M. H. Nahm, “NOD-like receptors in infection, immunity, and diseases,” Yonsei Med. J., vol. 57, no. 1, pp. 5–14, 2016.

[57] O. Takeuchi and S. Akira, “Pattern Recognition Receptors and Inflammation,” Cell, vol. 140, no. 6, pp. 805–820, Mar. 2010.

[58] D. Ramanan, M. S. Tang, R. Bowcutt, P. Loke, and K. Cadwell, “Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal bacteroides vulgatus,” Immunity, vol. 41, no. 2, pp. 311–324, 2014.

[59] T. Petnicki-Ocwieja et al., “Nod2 is required for the regulation of commensal microbiota in the intestine,” Proc. Natl. Acad. Sci., vol. 106, no. 37, pp. 15813–15818, Sep. 2009.

[60] E. Elinav et al., “NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis,” Cell, vol. 145, no. 5, pp. 745–757, 2011.

[61] M. A. Kinnebrew, C. Ubeda, L. A. Zenewicz, N. Smith, R. A. Flavell, and E. G. Pamer, “Bacterial Flagellin Stimulates Toll-Like Receptor 5– Dependent Defense against Vancomycin-Resistant Enterococcus Infection,” J. Infect. Dis., vol. 201, no. 4, pp. 534–543, 2010.

[62] N. K. Crellin, S. Trifari, C. D. Kaplan, N. Satoh-Takayama, J. P. Di Santo, and H. Spits, “Regulation of cytokine secretion in human CD127+LTi-like innate lymphoid cells by toll-like receptor 2,” Immunity, vol. 33, no. 5, pp. 752–764, 2010.

[63] D. Artis, “Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut,” Nat. Rev. Immunol., vol. 8, no. 6, pp. 411–420, 2008.

[64] C. A. Thaiss, N. Zmora, M. Levy, and E. Elinav, “The microbiome and innate immunity,” Nature, vol. 535, no. 7610, pp. 65–74, Jul. 2016.

[65] A. Everard et al., “Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status,” Nat. Commun., vol. 5, pp. 1–12, 2014.

[66] C. G. Figdor, Y. van Kooyk, and G. J. Adema, “C-TYPE LECTIN RECEPTORS ON DENDRITIC CELLS AND LANGERHANS CELLS,” Nat. Rev. Immunol., vol. 2, no. 2, pp. 77–84, Feb. 2002.

[67] S. Saijo and Y. Iwakura, “Dectin-1 and Dectin-2 in innate immunity against fungi,” Int. Immunol., vol. 23, no. 8, pp. 467–472, 2011.

[68] A. Yonekawa et al., “Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria,” Immunity, vol. 41, no. 3, pp. 402– 413, 2014.

[69] S. Saijo et al., “Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against candida albicans,” Immunity, vol. 32, no. 5, pp. 681–691, 2010.

[70] M. J. Marakalala, L. M. Graham, and G. D. Brown, “The Role of Syk/CARD9-Coupled C-Type Lectin Receptors in Immunity to Mycobacterium tuberculosis Infections,” Clin. Dev. Immunol., vol. 2010, pp. 1–9, 2010.

[71] G. D. Brown et al., “Dectin-1 Is A Major β-Glucan Receptor On Macrophages,” J. Exp. Med., vol. 196, no. 3, pp. 407–412, 2002.

[72] P. R. Taylor et al., “The β-Glucan Receptor, Dectin-1, Is Predominantly Expressed on the Surface of Cells of the Monocyte/Macrophage and Neutrophil Lineages,” J. Immunol., vol. 169, no. 7, pp. 3876–3882, Oct. 2002.

[73] S. LeibundGut-Landmann et al., “Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17,” Nat. Immunol., vol. 8, no. 6, pp. 630–638, 2007.

[74] G. D. Brown, “Dectin-1 : A signalling non-TLR pattern-recognition receptor,” Nat. Rev. Immunol., vol. 6, no. 1, pp. 33–43, 2006.

[75] S. Saijo et al., “Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans,” Nat. Immunol., vol. 8, no. 1, pp. 39–46, 2007.

[76] P. R. Taylor et al., “Dectin-1 is required for β-glucan recognition and control of fungal infection,” Nat. Immunol., vol. 8, no. 1, pp. 31–38, Jan. 2007.

[77] S. Batbayar, D.-H. Lee, and H.-W. Kim, “Immunomodulation of Fungal βGlucan in Host Defense Signaling by Dectin-1,” Biomol. Ther., vol. 20, no. 5, pp. 433–445, Sep. 2012.

[78] S. Nakae et al., “Antigen-specific T cell sensitization is impaired in Il-17- deficient mice, causing suppression of allergic cellular and humoral responses,” Immunity, vol. 17, no. 3, pp. 375–387, 2002.

[79] F. Obermeier, N. Dunger, L. Deml, H. Herfarth, J. Schölmerich, and W. Falk, “CpG motifs of bacterial DNA exacerbate colitis of dextran sulfate sodium-treated mice,” Eur. J. Immunol., vol. 32, no. 7, p. 2084, Jul. 2002.

[80] D. M. Reid, N. A. Gow, and G. D. Brown, “Pattern recognition: recent insights from Dectin-1,” Curr. Opin. Immunol., vol. 21, no. 1, pp. 30–37, 2009.

[81] M. Merad, P. Sathe, J. Helft, J. Miller, and A. Mortha, “The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting,” Annu. Rev. Immunol., vol. 31, no. 1, pp. 563–604, Mar. 2013.

[82] S. Nuding et al., “Antibacterial activity of human defensins on anaerobic intestinal bacterial species: a major role of HBD-3,” Microbes Infect., vol. 11, no. 3, pp. 384–393, 2009.

[83] L. W. Peterson and D. Artis, “Intestinal epithelial cells: Regulators of barrier function and immune homeostasis,” Nat. Rev. Immunol., vol. 14, no. 3, pp. 141–153, 2014.

[84] N. Holmes, “CD45: all is not yet crystal clear,” Immunology, vol. 117, no. 2, pp. 145–155, Feb. 2006.

[85] S. W. Rossi, W. E. Jenkinson, G. Anderson, and E. J. Jenkinson, “Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium,” Nature, vol. 441, no. 7096, pp. 988–991, Jun. 2006.

[86] D. Viemann et al., “Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells,” Blood, vol. 105, no. 7, pp. 2955–2962, 2005.

[87] D. Pilling, T. Fan, D. Huang, B. Kaul, and R. H. Gomer, “Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts,” PLoS One, vol. 4, no. 10, pp. 31–33, 2009.

[88] B. D. Corbin et al., “Metal chelation and inhibition of bacterial growth in tissue abscesses,” Science (80-. )., vol. 319, no. 5865, pp. 962–965, 2008.

[89] T. Vogl et al., “Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock,” Nat. Med., vol. 13, no. 9, pp. 1042–1049, 2007.

[90] K. Xu and C. L. Geczy, “IFN- and TNF Regulate Macrophage Expression of the Chemotactic S100 Protein S100A8,” J. Immunol., vol. 164, no. 9, pp. 4916–4923, 2000.

[91] M. E. Wildenberg and G. R. van den Brink, “A major advance in ex vivo intestinal organ culture,” Gut, vol. 61, no. 7, pp. 961–962, Jul. 2012.

[92] M. K. Dame et al., “Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived,” Lab. Investig., vol. 94, no. 2, pp. 222–234, Feb. 2014.

[93] S. H. LANG, J. SMITH, C. HYDE, C. MACINTOSH, M. STOWER, and N. J. MAITLAND, “DIFFERENTIATION OF PROSTATE EPITHELIAL CELL CULTURES BY MATRIGEL/ STROMAL CELL GLANDULAR RECONSTRUCTION,” Vitr. Cell. Dev. Biol. - Anim., vol. 42, no. 8, p. 273, 2006.

[94] I. D. Iliev et al., “Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis,” Science (80-. )., vol. 336, no. 6086, pp. 1314–1317, 2012.

[95] M. Kanagawa, T. Satoh, A. Ikeda, Y. Adachi, N. Ohno, and Y. Yamaguchi, “Structural Insights into Recognition of Triple-helical -Glucans by an Insect Fungal Receptor,” J. Biol. Chem., vol. 286, no. 33, pp. 29158–29165, Aug. 2011.

[96] H. Saitô, T. Ohki, and T. Sasaki, “A 13C nuclear magnetic resonance study of gel-forming (1 goes to 3)-beta-d-glucans. Evidence of the presence of single-helical conformation in a resilient gel of a curdlan-type polysaccharide 13140 from Alcaligenes faecalis var. myxogenes IFO 13140.,” Biochemistry, vol. 16, no. 5, pp. 908–14, Mar. 1977.

[97] K. R. Phillips, J. Pik, H. G. Lawford, B. Lavers, A. Kligerman, and G. R. Lawford, “Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture.,” Can. J. Microbiol., vol. 29, no. 10, pp. 1331–8, Oct. 1983.

[98] M. Matsushita, “Curdlan, a (1 → 3)-β-d-glucan from Alcaligenes faecalis var. myxogenes IFO13140, activates the alternative complement pathway by heat treatment,” Immunol. Lett., vol. 26, no. 1, pp. 95–97, 1990.

[99] S. Rose, A. Misharin, and H. Perlman, “A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment,” Cytom. Part A, vol. 81A, no. 4, pp. 343–350, Apr. 2012.

[100] B. A. Wevers et al., “Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity,” Cell Host Microbe, vol. 15, no. 4, pp. 494–505, 2014.

[101] P. K. Kump et al., “Alteration of Intestinal Dysbiosis by Fecal Microbiota Transplantation Does not Induce Remission in Patients with Chronic Active Ulcerative Colitis,” Inflamm. Bowel Dis., vol. 19, no. 10, pp. 2155– 2165, 2013.

[102] T. E. Kehl-Fie et al., “Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus,” Cell Host Microbe, vol. 10, no. 2, pp. 158–164, 2011.

[103] Y. Chen et al., “Robust bioengineered 3D functional human intestinal epithelium,” Sci. Rep., vol. 5, pp. 1–11, 2015.

[104] P. S. Thiagarajan et al., “Vimentin is an endogenous ligand for the pattern recognition receptor Dectin-1,” Cardiovasc. Res., vol. 99, no. 3, pp. 494– 504, 2013.

[105] D. Mucida et al., “Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid,” Science (80-. )., vol. 317, no. 5835, pp. 256– 260, 2007.

[106] J. A. Hall et al., “Essential role for retinoic acid in the promotion of CD4+T cell effector responses via retinoic acid receptor alpha,” Immunity, vol. 34, no. 3, pp. 435–447, 2011.

[107] R. Reifen, T. Nur, K. Ghebermeskel, G. Zaiger, R. Urizky, and M. Pines, “Vitamin A deficiency exacerbates inflammation in a rat model of colitis through activation of nuclear factor-kappaB and collagen formation.,” J. Nutr., vol. 132, no. 9, pp. 2743–7, 2002.

[108] S. Devkota et al., “Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice,” Nature, vol. 487, no 7405, pp. 104–108, 2012.

参考文献をもっと見る