リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「骨粗鬆症と機械的荷重がインプラント周囲骨に与える影響について」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

骨粗鬆症と機械的荷重がインプラント周囲骨に与える影響について

陳, 曦 CHEN, XI チン, ギ 九州大学

2022.03.23

概要

本研究はオッセオインテグレーションを獲得したインプラント周囲骨に対するエストロゲン欠乏および機械的荷重の影響について検討することを目的とし、ラット顎骨へのインプラント埋入モデルを用いて検討を行った。

 雌性ラット(36頭)の上顎右側第一臼歯を抜去し、1週後にショートヘッドあるいはロングヘッドを有するチタンインプラントを抜歯窩に埋入し、前者を非荷重群、後者を荷重群とした。インプラント埋入9週後に、骨粗鬆症群(卵巣摘出による骨量減少動物モデル:Ovariectomized animals, OVX)と偽手術群(皮膚切開及び筋層切開のみ:SHAM)に分けた。さらに21週後・36週齢時に全てのラットを安楽死させ、μ-CTにて大腿骨の骨密度の測定及びパラフィン切片にて脛骨の組織学的観察を行い、骨粗鬆症の罹患を確認した後、インプラント周囲骨の非脱灰研磨標本及び凍結切片を作製し、組織学的・組織形態計測学的検討及び免疫組織化学的検討を行った。

 その結果、大腿骨の骨密度(BMD)および骨体積密度(BV/TV)はOVX群において有意に低かった。OVX群は、SHAM群と比較して脛骨近位端海綿骨の骨梁配列が疎になり、骨梁の断裂・消失を認めた。上顎骨の非脱灰研磨標本から、非荷重OVX群は、荷重OVX群と比較して、明らかな軟組織の侵入及び骨喪失を認めた。インプラントスレッド間に設定した関心領域中の骨密度(BD)と骨-インプラント接触率(BIC)はSHAM群よりOVX群の方が低かったが、OVX群内では非荷重群が荷重群と比較して有意に低いBD、BICを示した。OVX群においては、酒石酸抵抗性酸性ホスファターゼ陽性細胞数がSHAM群より有意に多かった。骨細胞のスクレロスチン陽性細胞率については、OVX群、SHAM群いずれにおいても荷重群の方が非荷重群より有意に低かった。

 本結果から、エストロゲン欠乏は長期的なオッセオインテグレーションの維持にリスクを及ぼすことが示唆された。また、エストロゲン欠乏がインプラント周囲骨形成やオッセオインテグレーション維持に与える影響を機械的荷重が低減させることが示唆された。

参考文献

Albrektsson, T., Chrcanovic, B., O¨ stman, P.O., Sennerby, L., 2017. Initial and long-term crestal bone responses to modern dental implants. Periodontol 73, 41–50. https:// doi.org/10.1111/prd.12176, 2000.

Allison, H., McNamara, L.M., 2019. Inhibition of osteoclastogenesis by mechanically stimulated osteoblasts is attenuated during estrogen deficiency. Am. J. Physiol. Cell Physiol. 317, C969–C982. https://doi.org/10.1152/ajpcell.00168.2019.

Alsaadi, G., Quirynen, M., Koma´rek, A., Van Steenberghe, D., 2007. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J. Clin. Periodontol. 34, 610–617. https://doi.org/10.1111/j.1600- 051X.2007.01077.x.

Atkins, G.J., Findlay, D.M., 2012. Osteocyte regulation of bone mineral: a little give and take. Osteoporos. Int. 23, 2067–2079. https://doi.org/10.1007/s00198-012-1915-z.

August, M., Chung, K., Chang, Y., Glowacki, J., 2001. Influence of estrogen status on endosseous implant osseointegration. J. Oral Maxillofac. Surg. 59, 1285–1289. https://doi.org/10.1053/joms.2001.27515.

Bagi, C.M., Berryman, E., Moalli, M.R., 2011. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp. Med. 61, 76–85.

Bellido, T., 2014. Osteocyte-driven bone remodeling. Calcif. Tissue Int. 94, 25–34. https://doi.org/10.1007/s00223-013-9774-y.

Bidez, M.W., Misch, C.E., 1992. Issue in bone mechanics related to oral implants. Implant Dent. 1, 289–294. https://doi.org/10.1097/00008505-199200140-00011.

Bruker, 2013. Bone Mineral Density (BMD) and Tissue Mineral Density (TMD) Calibration and Measurement Using Bruker microCT BMD Phantoms and CT- Analyser Software. Bruker, Kontich, Belgium.

Burr, D.B., Hooser, M., 1995. Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo. Bone 17, 431–433. https://doi. org/10.1016/S8756-3282(95)00241-3.

Delgado-Ruiz, R.A., Calvo-Guirado, J.L., Romanos, G.E., 2019. Effects of occlusal forces on the peri-implant-bone interface stability. Periodontol 81, 179–193. https://doi. org/10.1111/prd.12291, 2000.

Dobbs, M.B., Buckwalter, J., Saltzman, C., 1999. Osteoporosis: the increasing role of the orthopaedist. Iowa Orthop. J. 19, 43–52.

Du, Z., Steck, R., Doan, N., Woodruff, M.A., Ivanovski, S., Xiao, Y., 2015. Estrogen deficiency-associated bone loss in the maxilla: a methodology to quantify the changes in the maxillary intra-radicular alveolar bone in an ovariectomized rat osteoporosis model. Tissue Eng. C Methods 21, 458–466. https://doi.org/10.1089/ ten.tec.2014.0268.

Duarte, P.M., Cesar Neto, J.B., Gonçalves, P.F., Sallum, E.A., Nociti, F.H., 2003. Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent. 12, 340–346. https://doi.org/10.1097/01.ID.0000099750.26582.4b.

Duyck, J., Rønold, H.J., Van Oosterwyck, H., Naert, I., Vander Sloten, J., Ellingsen, J.E., 2001. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin. Oral Implants Res. 12, 207–218. https://doi.org/10.1034/j.1600-0501.2001.012003207.x.

Esaki, D., Matsushita, Y., Ayukawa, Y., Sakai, N., Sawae, Y., Koyano, K., 2012. Relationship between magnitude of immediate loading and peri-implant osteogenesis in dogs. Clin. Oral Implants Res. 23, 1290–1296. https://doi.org/ 10.1111/j.1600-0501.2011.02305.x.

Esposito, M., Thomsen, P., Ericson, L.E., Sennerby, L., Lekholm, U., 2000. Histopathologic observations on late oral implant failures. Clin. Implant Dent. Relat. Res. 2, 18–32. https://doi.org/10.1111/j.1708-8208.2000.tb00103.x.

Fujii, N., Kusakari, H., Maeda, T., 1998. A histological study on tissue responses to titanium implantation in rat maxilla: the process of epithelial regeneration and bone reaction. J. Periodontol. 69, 485–495. https://doi.org/10.1902/jop.1998.69.4.485.

Futami, T., Fujii, N., Ohnishi, H., Taguchi, N., Kusakari, H., Ohshima, H., Maeda, T., 2000. Tissue response to titanium implants in the rat maxilla: ultrastructural and histochemical observations of the bone-titanium interface. J. Periodontol. 71, 287–298. https://doi.org/10.1902/jop.2000.71.2.287.

Giro, G., Coelho, P.G., Pereira, R.M.R., Jorgetti, V., Marcantonio, E., Orrico, S.R.P., 2011. The effect of oestrogen and alendronate therapies on postmenopausal bone loss around osseointegrated titanium implants. Clin. Oral Implants Res. 22, 259–264. https://doi.org/10.1111/j.1600-0501.2010.01989.x.

Hughes, D.E., Dai, A., Tiffee, J.C., Li, H.H., Mundy, G.R., Boyce, B.F., 1996. Estrogen promotes apoptosis of murine osteoclasts mediated byTGF-P. Nat. Med. 2, 1132–1136. https://doi.org/10.1038/nm1096-1132.

Isidor, F., 1996. Loss of osseointegration caused by occlusal load of oral implants: a clinical and radiographic study in monkeys. Clin. Oral Implants Res. 7, 143–152. https://doi.org/10.1034/j.1600-0501.1996.070208.x.

Isidor, F., 2006. Influence of forces on peri-implant bone. Clin. Oral Implants Res. 2, 8–18. https://doi.org/10.1111/j.1600-0501.2006.01360.x.

Ji, M.X., Yu, Q., 2015. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 1, 9–13. https://doi.org/10.1016/j.cdtm.2015.02.006.

Johnston, B.D., Ward, W.E., 2015. The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. BioMed Res. Int. https://doi.org/ 10.1155/2015/635023.

Joldersma, M., Klein-Nulend, J., Oleksik, A.M., Heyligers, I.C., Burger, E.H., 2001. Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women. Am. J. Physiol. Endocrinol. Metab. 280, 436–442. https://doi. org/10.1152/ajpendo.2001.280.3.e436.

Kalu, D.N., 1991. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 15, 175–191. https://doi.org/10.1016/0169-6009(91)90124-I.

Kameda, T., Mano, H., Yuasa, T., Mori, Y., Miyazawa, K., Shiokawa, M., Nakamaru, Y., Hiroi, E., Hiura, K., Kameda, A., Yang, N.N., Hakeda, Y., Kumegawa, M., 1997. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone- resorbing osteoclasts. J. Exp. Med. 186, 489–495. https://doi.org/10.1084/ jem.186.4.489.

Kharode, Y.P., Sharp, M.C., Bodine, P.V.N., 2008. Utility of the ovariectomized rat as a model for human osteoporosis in drug discovery. Methods Mol. Biol. 455, 111–124. https://doi.org/10.1007/978-1-59745-104-8_8.

Kim, Y., Oh, T.J., Misch, C.E., Wang, H.L., 2005. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin. Oral Implants Res. 16, 26–35. https://doi.org/10.1111/j.1600-0501.2004.01067.x.

Klein-Nulend, J., Bacabac, R.G., Bakker, A.D., 2012. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur. Cell. Mater. 24, 278–291. https://doi.org/10.22203/eCM.v024a20.

Kousteni, S., Bellido, T., Plotkin, L.I., O’Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Roberson, P.K., Weinstein, R.S., Jilka, R.L., Manolagas, S.C., 2001. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730. https://doi.org/10.1016/s0092-8674(01)00268-9.

Li, X., Ominsky, M.S., Niu, Q.T., Sun, N., Daugherty, B., D’Agostin, D., Kurahara, C., Gao, Y., Cao, J., Gong, J., Asuncion, F., Barrero, M., Warmington, K., Dwyer, D., Stolina, M., Morony, S., Sarosi, I., Kostenuik, P.J., Lacey, D.L., Simonet, W.S., Ke, H. Z., Paszty, C., 2008. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869. https://doi.org/10.1359/jbmr.080216.

Li, Y., He, S., Hua, Y., Hu, J., 2017. Effect of osteoporosis on fixation of osseointegrated implants in rats. J. Biomed. Mater. Res. B Appl. Biomater. 105, 2426–2432. https:// doi.org/10.1002/jbm.b.33787.

Manolagas, S.C., 2000. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21, 115–137. https://doi.org/10.1210/edrv.21.2.0395.

Mattheos, N., Schittek Janda, M., Zampelis, A., Chronopoulos, V., 2013. Reversible, Non- plaque-induced loss of osseointegration of successfully loaded dental implants. Clin. Oral Implants Res. 24, 347–354. https://doi.org/10.1111/clr.12009.

Merheb, J., Temmerman, A., Rasmusson, L., Kübler, A., Thor, A., Quirynen, M., 2016. Influence of skeletal and local bone density on dental implant stability in patients with osteoporosis. Clin. Implant Dent. Relat. Res. 18, 253–260. https://doi.org/ 10.1111/cid.12290.

Munhoz, E.A., Bodanezi, A., Cestari, T.M., Taga, R., Ferreira Junior, O., de Carvalho, P.S. P., 2011. Biomechanical and microscopic response of bone to titanium implants in the presence of inorganic grafts. J. Oral Implantol. 37, 19–25. https://doi.org/ 10.1563/AAID-JOI-D-09-00086.

Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W. J., Clark, A., Cuthill, I.C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S.T., Howells, D.W., Karp, N.A., Lazic, S.E., Lidster, K., MacCallum, C.J., Macleod, M., Pearl, E.J., Petersen, O.H., Rawle, F., Reynolds, P., Rooney, K., Sena, E.S., Silberberg, S.D., Steckler, T., Würbel, H., 2020. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 https://doi.org/ 10.1371/journal.pbio.3000410.

Ruffoni, D., Müller, R., Van Lenthe, G.H., 2012. Mechanisms of reduced implant stability in osteoporotic bone. Biomech. Model. Mechanobiol. 11, 313–323. https://doi.org/ 10.1007/s10237-011-0312-4.

Sozen, T., Ozisik, L., Basaran, N.C., 2017. An overview and management of osteoporosis. Eur. J. Rheumatol. 4, 46–56. https://doi.org/10.5152/eurjrheum.2016.048.

Takemura, Y., Moriyama, Y., Ayukawa, Y., Kurata, K., Rakhmatia, Y.D., Koyano, K., 2019. Mechanical loading induced osteocyte apoptosis and connexin 43 expression in three-dimensional cell culture and dental implant model. J. Biomed. Mater. Res. 107, 815–827. https://doi.org/10.1002/jbm.a.36597.

Tomkinson, A., Gevers, E.F., Wit, J.M., Reeve, J., Noble, B.S., 1998. The role of estrogen in the control of rat osteocyte apoptosis. J. Bone Miner. Res. 13, 1243–1250. https:// doi.org/10.1359/jbmr.1998.13.8.1243.

Van der Meulen, M.C., Jepsen, K.J., Miki´c, B., 2001. Understanding bone strength: size isn’t everything. Bone 29, 101–104. https://doi.org/10.1016/S8756-3282(01)00491-4.

Viera-Negron, Y.E., Ruan, W., Winger, J.N., Hou, X., Sharawy, M.M., Borke, J.L., 2008. Effect of ovariectomy and alendronate on implant osseointegration in rat maxillary bone. J. Oral Implantol. 34, 76–82. https://doi.org/10.1563/1548-1336(2008)34 [76:EOOAAO]2.0.CO;2.

Winkler, D.G., Sutherland, M.K., Geoghegan, J.C., Yu, C., Hayes, T., Skonier, J.E., Shpektor, D., Jonas, M., Kovacevich, B.R., Staehling-Hampton, K., Appleby, M., Brunkow, M.E., Latham, J.A., 2003. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276. https://doi.org/ 10.1093/emboj/cdg599.

Wirth, A.J., Goldhahn, J., Flaig, C., Arbenz, P., Müller, R., Van Lenthe, G.H., 2011. Implant stability is affected by local bone microstructural quality. Bone 49, 473–478. https://doi.org/10.1016/j.bone.2011.05.001.

Wronski, T.J., Dann, L.M., Scott, K.S., Cintro´n, M., 1989. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif. Tissue Int. 45, 360–366. https:// doi.org/10.1007/BF02556007.

Yamazaki, M., Shirota, T., Tokugawa, Y., Motohashi, M., Ohno, K., Michi, K., Yamaguchi, A., 1999. Bone reactions to titanium screw implants in ovariectomized animals. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87, 411–418. https:// doi.org/10.1016/S1079-2104(99)70239-8.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る