リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Forensic Species Identification by Fluorescent Multiplex PCR」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Forensic Species Identification by Fluorescent Multiplex PCR

森, 幾啓 岐阜大学

2022.03.14

概要

DNA試料に基づく動物種識別法は、犯罪捜査、野生生物の違法取引調査、法医昆虫学、食品認証などに広く利用されている。法科学分野では、ヒト個人識別について数多くの研究が進められ標準的な解析方法が確立されてきたが、哺乳類や鳥類一般の種識別に関しては標準的な手法が確立されていない。特に、複数種のDNAが混合した劣化試料から低コストで効率的に動物種識別を行う手法の確立が求められている。

論文は4章から構成される。第1章では、本研究の背景と目的をまとめた。第2章では、ミトコンドリアDNA(mtDNA)の分析に基づくこれまでの手法を評価した。第3章では、新しいアッセイ法の開発およびその信頼性に対する詳細な評価を実施した。第4章では、本研究から得られる結論がまとめた。

第2章では、哺乳類の種判別に広く用いられてきたmtDNAに基づく手法を比較検討した。特に、複数種のDNAが混合した試料からの識別という観点で、それぞれの手法の信頼性および汎用性を評価した。現在最も広く用いられているmtDNAシークエンス解析が混合試料の分析においては脆弱であることを示した。その一方、近年技術的進歩が著しい次世代シークエンシング技術を用いたDNAメタバーコーディング解析は、混合試料の分析には強いものの、費用面と時間面で高コストであり、現場の法科学的検査機関が日常的に扱う手法としては適さないことを示した。これらの手法に対し、蛍光マルチプレックスPCR法は低コストで混合試料中の動物種識別能力に優れており、今後も重要な役割を果たしうることを明らかにした。

第3章では、共通プライマーによるmtDNAのD-loop領域の増幅と、種特異プライマーによるcytb領域の増幅とを組み合わせた蛍光マルチプレックスPCRに基づく種識別法を開発した。その結果、日本で日常的に出会う可能性のある動物種をほぼカバーする哺乳類22種および家禽4種の同時識別が可能となった。検出下限がmtDNA100コピーという高い検出感度を有し、混合DNA試料に関しても50:1~1:1までの様々な混合比で高い識別能力を有することを示した。さらに、ScientificWorkingGrouponDNAAnalysisMethods(SWGDAM)のガイドラインに基づいて、手法の信頼性等に関するバリデーションを実施した。

以上、本研究で開発したアッセイ法は低コストである一方で劣化した混合DNA試料にも対応可能であり、識別可能な種数も多い。したがって、日本の法科学分野における標準的な動物種識別法として広く使用されていくことが期待される。

この論文で使われている画像

参考文献

(1) Alacs, E. A., Georges, A., FitzSimmons, N. N., and Robertson, J. (2010). DNA detective: A review of molecular approaches to wildlife forensics. Forensic Science, Medicine, and Pathology. 6(3), 180~194.

(2) Amendt, J., Krettek, R., and Zehner, R. (2004). Forensic entomology. Naturwissenschaften. 91(2), 51~65.

(3) Amendt, J., Richards, C. S., Campobasso, C. P., Zehner, R., and Hall, M. J. R. (2011). Forensic entomology: Applications and limitations. Forensic Science, Medicine, and Pathology. 7(4), 379~392.

(4) Amorim, A., Pereira, F., Alves, C., and García, O. (2020). Species assignment in forensics and the challenge of hybrids. Forensic Science International: Genetics. 48, 102333.

(5) Anderson, D., Toma, R., Negishi, Y., Okuda, K., Ishiniwa, H., Hinton, T. G., Nanba, K., Tamate, H. B., and Kaneko, S. (2019). Mating of escaped domestic pigs with wild boar and possibility of their offspring migration after the Fukushima Daiichi Nuclear Power Plant accident. Scientific Reports. 9(1), 1~6.

(6) Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature. 290(5806), 457~465.

(7) Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M., and Howell, N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genetics. 23(2), 147~147.

(8) Anhalt, J. P., and Yu, P. K. (1975). Counterimmunoelectrophoresis of pneumococcal antigens:improved sensitivity for the detection of types VII and XIV. Journal of Clinical Microbiology. 2(6), 510~515.

(9) Arulandhu, A. J., Staats, M., Hagelaar, R., Voorhuijzen, M. M., Prins, T. W., Scholtens, I., Costessi, A., Duijsings, D., Rechenmann, F., Gaspar, F. B., Barreto Crespo, M. T., Holst-Jensen, A., Birck, M., Burns, M., Haynes, E., Hochegger, R., Klingl, A., Lundberg, L., Natale, C., Niekamp, H., Perri, E., Barbante, A., Rosec, J. P., Seyfarth, R., Sovová, T., Moorleghem C. V., Ruth, S. V., Peelen, T., and Kok, E. (2017). Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. GigaScience. 6(10), gix080.

(10) Bendall, K. E., and Sykes, B. C. (1995). Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. American Journal of Human Genetics. 57(2), 248 ~256.

(11) Bertolini, F., Ghionda, M. C., D’Alessandro, E., Geraci, C., Chiofalo, V., and Fontanesi, L. (2015). A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. PLoS ONE. 10(4), e0121701.

(12) Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research. 27(8), 1767~ 1780.

(13) Branicki, W., Kupiec, T., and Pawlowski, R. (2003). Validation of cytochrome b sequence analysis as a method of species identification. J Forensic Sci. 48(1), 83~87.

(14) Bravi, C. M., Lirón, J. P., Mirol, P. M., Ripoli, M. V., Peral-García, P., and Giovambattista, G. (2004). A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Legal Medicine. 6(4), 246~251.

(15) Butler, J. M. (2012). Advanced Topics in Forensic DNA Typing. In Advanced Topics in Forensic DNA Typing: Methodology. Elsevier Academic Press.

(16) Chen, F., Dang, Y. H., Yan, C. X., Liu, Y. L., Deng, Y. J., Fulton, D. J. R., and Chen, T. (2009). Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups. Journal of Zhejiang University: Science B. 10(10), 711~720.

(17) Chen, S. Y., Yao, Y. G., and Liu, Y. P. (2012). Species Identification of Ten Common Farm Animals Based on Mitochondrial 12S rRNA Gene Polymorphisms. Animal Biotechnology. 23(3), 213~220.

(18) Coghlan, M. L., Haile, J., Houston, J., Murray, D. C., White, N. E., Moolhuijzen, P., Bellgard, M. I., and Bunce, M. (2012). Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genetics. 8(4), e1002657.

(19) Conte, J., Potoczniak, M. J., Mower, C., and Tobe, S. S. (2019). ELEquant: a developmental framework and validation of forensic and conservation real-time PCR assays. Molecular Biology Reports. 46(2), 2093~2100.

(20) Dalmasso, A., Fontanella, E., Piatti, P., Civera, T., Rosati, S., and Bottero, M. T. (2004). A multiplex PCR assay for the identification of animal species in feedstuffs. Molecular and Cellular Probes. 18(2), 81~87.

(21) Dawnay, N., Ogden, R., McEwing, R., Carvalho, G. R., and Thorpe, R. S. (2007). Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Science International. 173(1), 1~6.

(22) Deagle, B. E., Eveson, J. P., and Jarman, S. N. (2006). Quantification of damage in DNA recovered from highly degraded samples - A case study on DNA in faeces. Frontiers in Zoology. 3(1), 11.

(23) Deagle, B. E., Tollit, D. J., Jarman, S. N., Hindell, M. A., Trites, A. W., and Gales, N. J. (2005). Molecular scatology as a tool to study diet: Analysis of prey DNA in scats from captive Steller sea lions. Molecular Ecology. 14(6), 1831~1842.

(24) Dobrovolny, S., Blaschitz, M., Weinmaier, T., Pechatschek, J., Cichna-Markl, M., Indra, A., Hufnagl, P., and Hochegger, R. (2019). Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food. Food Chemistry. 272, 354~ 361.

(25) Ewart, K. M., Frankham, G. J., McEwing, R., The, D. T., Hogg, C. J., Wade, C., Lo, N., and Johnson, R. N. (2018). A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam. PLoS ONE. 13(6), e0198565.

(26) Ewart, K. M., Frankham, G. J., McEwing, R., Webster, L. M. I., Ciavaglia, S. A., Linacre, A. M. T., The, D. T., Ovouthan, K., and Johnson, R. N. (2018). An internationally standardized species identification test for use on suspected seized rhinoceros horn in the illegal wildlife trade. Forensic Science International: Genetics. 32, 33~39.

(27) Faltin, B., Wadle, S., Roth, G., Zengerle, R., and von Stetten, F. (2012). Mediator probe PCR: A novel approach for detection of real-time PCR based on label-free primary probes and standardized secondary universal fluorogenic reporters. Clinical Chemistry. 58(11), 1546~1556.

(28) Frézal, L., and Leblois, R. (2008). Four years of DNA barcoding: Current advances and prospects. Infection, Genetics and Evolution. 8(5), 727~736.

(29) Galimberti, A., De Mattia, F., Losa, A., Bruni, I., Federici, S., Casiraghi, M., Martellos, S., and Labra, M. (2013). DNA barcoding as a new tool for food traceability. Food Research International. 50(1), 55~63.

(30) GilArriortua, M., Salona Bordas, M. I., Cainé, L. M., Pinheiro, F., and de Pancorbo, M. M. (2013). Cytochrome b as a useful tool for the identification of blowflies of forensic interest (Diptera, Calliphoridae). Forensic Science International. 228, 132~136.

(31) Ginther, C., Issel-Tarver, L., and King, M. C. (1992). Identifying individuals by sequencing mitochondrial DNA from teeth. Nature Genetics. 2(2), 135~138.

(32) Girish, P. S., Anjaneyulu, A. S. R., Viswas, K. N., Shivakumar, B. M., Anand, M., Patel, M., and Sharma, B. (2005). Meat species identification by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene. Meat Science. 70(1), 107~112.

(33) Gudea, A. I., and Ștefan, A. C. (2013). Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples. Folia Morphologica (Poland). 72(3), 239~248.

(34) Haider, N., Nabulsi, I., and Al-Safadi, B. (2012). Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Science. 90(2), 490~493.

(35) Hebert, P. D. N., Cywinska, A., Ball, S. L., and DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences. 270, 313~321.

(36) Hidaka, S., Matsumoto, M., Ohsako, S., Toyoshima, Y., and Nishinakagawa, H. (1998). A Histometrical Study on the Long Bones of Raccoon Dogs, Nyctereutes procyonoides and Badgers, Meles meles. Journal of Veterinary Medical Science. 60(3), 323~326.

(37) Holland, M. M., Fisher, D. L., Mitchell, L. G., Rodriquez, W. C., Canik, J. J., Merril, C. R., and Weedn, V. W. (1993). Mitochondrial DNA Sequence Analysis of Human Skeletal Remains: Identification of Remains from the Vietnam War. Journal of Forensic Sciences. 38(3), 542~553.

(38) Holland, M. M., and Parsons, T. J. (1999). Mitochondrial DNA Sequence Analysis - Validation and Use for Forensic Casework. Forensic Science Review. 11(1), 21~50.

(39) Hsieh, H. M., Chiang, H. L., Tsai, L. C., Lai, S. Y., Huang, N. E., Linacre, A., and Lee, J. C. I. (2001). Cytochrome b gene for species identification of the conservation animals. Forensic Science International. 122(1), 7~18.

(40) Imaizumi, K., Akutsu, T., Miyasaka, S., and Yoshino, M. (2007). Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. International Journal of Legal Medicine. 121(3), 184~191.

(41) Inoi, T., Yoshino, M., and Seta, S. (1994). Histological investigation of human and animal bone fragments by microradiography and its application to a forensic case. Rep Natl Res Inst Police Sci. 4792~101.

(42) Ishida, N., Sakurada, M., Kusunoki, H., and Ueno, Y. (2018). Development of a simultaneous identification method for 13 animal species using two multiplex real-time PCR assays and melting curve analysis. Legal Medicine. 30, 64~71.

(43) Ito, F., Onishi, R., Yasue, H., and Nishibori, M. (2016). Application study on molecular discrimination for living animal species in human sphere of life. DNA Polymorphism. 24(1), 87 ~89.

(44) Iyengar, A. (2014). Forensic DNA analysis for animal protection and biodiversity conservation: A review. Journal for Nature Conservation. 22(3), 195~205.

(45) Johns, G. C., and Avise, J. C. (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution. 15(11), 1481~1490.

(46) Johnson, R. N., Wilson-Wilde, L., and Linacre, A. (2014). Current and future directions of DNA in wildlife forensic science. Forensic Science International: Genetics. 10(1), 1~11.

(47) Kanthaswamy, S., Premasuthan, A., Ng, J., Satkoski, J., and Goyal, V. (2012). Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification. Forensic Science International: Genetics. 6(2), 290~295.

(48) Karlsson, A. O., and Holmlund, G. (2007). Identification of mammal species using species-specific DNA pyrosequencing. Forensic Science International. 173(1), 16~20.

(49) Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 20(4), 1160~1166.

(50) Kitano, T., Umetsu, K., Tian, W., and Osawa, M. (2007). Two universal primer sets for species identification among vertebrates. International Journal of Legal Medicine. 121(5), 423~ 427.

(51) Kitpipit, T., Penchart, K., Ouithavon, K., Satasook, C., Linacre, A., and Thanakiatkrai, P. (2016). A novel real time PCR assay using melt curve analysis for ivory identification. Forensic Science International. 267, 210~217.

(52) Kitpipit, T., Thanakiatkrai, P., Penchart, K., Ouithavon, K., Satasook, C., and Linacre, A. (2016). Ivory species identification using electrophoresis-based techniques. Electrophoresis. 37, 3068~3075.

(53) Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences. 86(16), 6196~6200.

(54) Köppel, R., Daniels, M., Felderer, N., and Brünen-Nieweler, C. (2013). Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork. European Food Research and Technology. 236(6), 1093~1098.

(55) Köppel, R., van Velsen, F., Ganeshan, A., Pietsch, K., Weber, S., Graf, C., Murmann, P., Hochegger, R., and Licina, A. (2020). Multiplex real-time PCR for the detection and quantification of DNA from chamois, roe, deer, pork and beef. European Food Research and Technology. 246(5), 1007~1015.

(56) Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. 33(7), 1870~1874.

(57) Lee, J. N., Jiang, M., Wen, Y., Li, S., and Yuan, G. (2018). Multiplex Assay for Identifying Animal Species Found in the Tibetan Area Using the Mitochondrial 12S rRNA Gene. Animal Biotechnology. 29(1), 75~80.

(58) Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research. 49(W1), W293~W296.

(59) Li, M., Tian, S., Yeung, C. K. L., Meng, X., Tang, Q., Niu, L., Wang, X., Jin, L., Ma, J., Long, K., Zhou, C., Cao, Y., Zhu, L., Bai, L., Tang, G., Gu, Y., Jiang, A., Li, X., and Li, R. (2014). Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Scientific Reports. 4(1), 1~7.

(60) Linacre, A., and Tobe, S. S. (2011). An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics. 2(1), 1-9.

(61) Lopez-Oceja, A., Gamarra, D., Borragan, S., Jiménez-Moreno, S., and De Pancorbo, M. M. (2016). New cyt b gene universal primer set for forensic analysis. Forensic Science International: Genetics. 23, 159~165.

(62) Lopez-Oceja, A., Nuñez, C., Baeta, M., Gamarra, D., and de Pancorbo, M. M. (2017). Species identification in meat products: A new screening method based on high resolution melting analysis of cyt b gene. Food Chemistry. 23, 701~706.

(63) Lorenzini, R. (2005). DNA forensics and the poaching of wildlife in Italy: A case study. Forensic Science International. 153, 218~221.

(64) Mafra, I., Ferreira, I. M. P. L. V. O., and Oliveira, M. B. P. P. (2008). Food authentication by PCR-based methods. European Food Research and Technology. 227(3), 649~665.

(65) Matsunaga, T., Chikuni, K., Tanabe, R., Muroya, S., Shibata, K., Yamada, J., and Shinmura, Y. (1999). A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Science. 51(2), 143~148.

(66) Meier, R., Wong, W., Srivathsan, A., and Foo, M. (2016). $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics. 32(1), 100~110.

(67) Monden, Y., Takasaki, K., Futo, S., Niwa, K., Kawase, M., Akitake, H., and Tahara, M. (2014). A rapid and enhanced DNA detection method for crop cultivar discrimination. Journal of Biotechnology. 185, 57~62.

(68) Mulhern, D. M., and Ubelaker, D. H. (2001). Differences in Osteon Banding Between Human and Nonhuman Bone. Journal of Forensic Sciences. 46(2), 14952J.

(69) Murray, B. W., McClymont, R. A., and Strobeck, C. (1995). Forensic Identification of Ungulate Species Using Restriction Digests of PCR-Amplified Mitochondrial DNA. Journal of Forensic Sciences. 40(6), 13861J.

(70) Murugaiah, C., Noor, Z. M., Mastakim, M., Bilung, L. M., Selamat, J., and Radu, S. (2009). Meat species identification and Halal authentication analysis using mitochondrial DNA. Meat Science. 83(1), 57~61.

(71) Naidu, A., Fitak, R. R., Munguia-Vega, A., and Culver, M. (2012). Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals. Molecular Ecology Resources. 12(2), 191~196.

(72) Nakamura, H., Muro, T., Imamura, S., and Yuasa, I. (2009). Forensic species identification based on size variation of mitochondrial DNA hypervariable regions. International Journal of Legal Medicine. 123(2), 177~184.

(73) Naue, J., Lutz-Bonengel, S., Pietsch, K., Sänger, T., Schlauderer, N., and Schmidt, U. (2012). Bite through the tent. International Journal of Legal Medicine. 126(3), 483~488.

(74) Naue, J., Lutz-Bonengel, S., Sänger, T., Schlauderer, N., and Schmidt, U. (2014). Modular real-time PCR screening assay for common European animal families. International Journal of Legal Medicine. 128(1), 11~18.

(75) Ogden, R., and Linacre, A. (2015). Wildlife forensic science: A review of genetic geographic origin assignment. Forensic Science International: Genetics. 18, 152~159.

(76) Ouchterlony, O. (1949). Antigen - Antibody Reactions In Gels. Acta Pathologica Microbiologica Scandinavica. 26(4), 507~515.

(77) Ouso, D. O., Otiende, M. Y., Jeneby, M. M., Oundo, J. W., Bargul, J. L., Miller, S. E., Wambua, L., and Villinger, J. (2020). Three-gene PCR and high-resolution melting analysis for differentiating vertebrate species mitochondrial DNA for biodiversity research and complementing forensic surveillance. Scientific Reports. 10(1), 1~13.

(78) Pääbo, S., Gifford, J. A., and Wilson, A. C. (1988). Mitochondrial DNA sequences from a 7000-year old brain. Nucleic Acids Research. 16(20), 9775~9787.

(79) Parson, W., Ballard, D., Budowle, B., Butler, J. M., Gettings, K. B., Gill, P., Gusmão, L., Hares, D. R., Irwin, J. A., King, J. L., Knijff, P. De, Morling, N., Prinz, M., Schneider, P. M., Neste, C. Van, Willuweit, S., and Phillips, C. (2016). Massively parallel sequencing of forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Science International: Genetics. 22, 54 ~63.

(80) Parson, W., Pegoraro, K., Niederstätter, H., Föger, M., and Steinlechner, M. (2000). Species identification by means of the cytochrome b gene. International Journal of Legal Medicine. 114, 23~28.

(81) Pereira, F., Carneiro, J., Matthiesen, R., Van Asch, B., Pinto, N., Gusmão, L., and Amorim, A. (2010). Identification of species by multiplex analysis of variable-length sequences. Nucleic Acids Research. 38(22), e203~e203.

(82) Pfeiffer, I., Burger, J., and Brenig, B. (2004). Diagnostic polymorphisms in the mitochondrial cytochrome b gene allow discrimination between cattle, sheep, goat, roe buck and deer by PCR-RFLP. BMC Genetics. 5(1), 30.

(83) Prusakova, O. V., Glukhova, X. A., Afanas’eva, G. V., Trizna, Y. A., Nazarova, L. F., and Beletsky, I. P. (2018). A simple and sensitive two-tube multiplex PCR assay for simultaneous detection of ten meat species. Meat Science. 137, 34~40.

(84) Ramón-Laca, A., Linacre, A. M. T., Gleeson, D. M., and Tobe, S. S. (2013). Identification multiplex assay of 19 terrestrial mammal species present in New Zealand. Electrophoresis. 34(24), 3370~3376.

(85) Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System: Barcoding. Molecular Ecology Notes. 7(3), 355~364.

(86) Ribani, A., Schiavo, G., Utzeri, V. J., Bertolini, F., Geraci, C., Bovo, S., and Fontanesi, L. (2018). Application of next generation semiconductor based sequencing for species identification in dairy products. Food Chemistry. 246,90~98.

(87) Ripp, F., Krombholz, C. F., Liu, Y., Weber, M., Schäfer, A., Schmidt, B., Köppel, R., and Hankeln, T. (2014). All-Food-Seq (AFS): A quantifiable screen for species in biological samples by deep DNA sequencing. BMC Genomics. 15(1), 639.

(88) Robin, E. D., and Wong, R. (1988). Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. Journal of Cellular Physiology. 136(3), 507~513.

(89) Şakalar, E., and Abasiyanik, M. F. (2012). The devolopment of duplex real-time PCR based on SYBR Green florescence for rapid identification of ruminant and poultry origins in foodstuff. Food Chemistry. 130(4), 1050~1054. (90) Sato, I., Nakaki, S., Murata, K., Takeshita, H., and Mukai, T. (2010). Forensic hair analysis to identify animal species on a case of pet animal abuse. International Journal of Legal Medicine. 124(3), 249~256.

(91) Savolainen, P., and Lundeberg, J. (1999). Forensic evidence based on mtDNA from dog and wolf hairs. Journal of Forensic Sciences. 44, 77~81.

(92) Schneider, P. M., Seo, Y., and Rittner, C. (1999). Forensic mtDNA hair analysis excludes a dog from having caused a traffic accident. International Journal of Legal Medicine. 112(5), 315 ~316.

(93) Schulz, I., Schneider, P. M., Olek, K., Rothschild, M. A., and Tsokos, M. (2006). Examination of postmortem animal interference to human remains using cross-species multiplex PCR. Forensic Science, Medicine, and Pathology. 2(2), 95~101.

(94) Sekiguchi, K., Imaizumi, K., Fujii, K., Mizuno, N., Ogawa, Y., Akutsu, T., Nakahara, H., Kitayama, T., and Kasai, K. (2008). Mitochondrial DNA population data of HV1 and HV2 sequences from Japanese individuals. Legal Medicine. 10(5), 284~286.

(95) Smith, R. N. (1995). Accurate size comparison of short tandem repeat alleles amplified by PCR. BioTechniques. 18(1), 122~128.

(96) Staats, M., Arulandhu, A. J., Gravendeel, B., Holst-Jensen, A., Scholtens, I., Peelen, T., Prins, T. W., and Kok, E. (2016). Advances in DNA metabarcoding for food and wildlife forensic species identification. Analytical and Bioanalytical Chemistry. 408(17), 4615~4630.

(97) Stern, A. W., and Lamm, C. G. (2011). Utilization of paw prints for species identification in the Canidae family. Journal of Forensic Sciences. 56(4), 1041~1043.

(98) Summerell, A. E., Frankham, G. J., Gunn, P., and Johnson, R. N. (2019). DNA based method for determining source country of the short beaked echidna (Tachyglossus aculeatus) in the illegal wildlife trade. Forensic Science International. 295, 46~53.

(99) SWGDAM. (2016). Validation Guidelines for DNA Analysis Methods. https://1ecb9588-ea6f-4feb-971a-73265dbf079c.filesusr.com/ugd/4344b0_813b241e8944497e99 b9c45b163b76bd.pdf

(100) Takahashi, R. (2018). Detection of inobuta from wild boar population in Japan by genetic analysis. Reviews in Agricultural Science. 6, 61~71.

(101) Thanakiatkrai, P., Dechnakarin, J., Ngasaman, R., and Kitpipit, T. (2019). Direct pentaplex PCR assay: An adjunct panel for meat species identification in Asian food products. Food Chemistry. 271, 767~772.

(102) Thanakiatkrai, P., and Kitpipit, T. (2017). Meat species identification by two direct-triplex real-time PCR assays using low resolution melting. Food Chemistry. 233, 144~150.

(103) ThermoFisher Scientific. (2018). User Guide: 3500/3500xL Genetic Analyzer with 3500 Series Data Collection Software 3.1 Revision C. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/100031809_3500_3500xL_Software_ v3_1_UG.pdf

(104) Tian, L., Sato, T., Niwa, K., Kawase, M., Tanner, A. C. R., and Takahashi, N. (2014). Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. BioMed Research International. 2014, 180323.

(105) Tillmar, A. O., Dell’Amico, B., Welander, J., and Holmlund, G. (2013). A universal method for species identification of mammals utilizing next generation sequencing for the analysis of DNA mixtures. PLoS ONE. 8(12), e83761.

(106) Tobe, S. S., and Linacre, A. M. T. (2008a). A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. ELECTROPHORESIS. 29(2), 340~347.

(107) Tobe, S. S., and Linacre, A. M. T. (2008b). A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Science International: Genetics. 2(4), 249~256.

(108) Wadle, S., Lehnert, M., Schuler, F., Köppel, R., Serr, A., Zengerle, R., and von Stetten, F. (2016). Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters. BioTechniques. 61(3), 123~128.

(109) Wasser, S. K., Houston, C. S., Koehler, G. M., Cadd, G. G., and Fain, S. R. (1997). Techniques for application of faecal DNA methods to field studies of Ursids. Molecular Ecology. 6(11), 1091~1097.

(110) Wilson-Wilde, L., Norman, J., Robertson, J., Sarre, S., and Georges, A. (2010). Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I (COI) gene. Forensic Science, Medicine, and Pathology. 6(3), 233~241.

(111) Wilson, M. R., Polanskey, D., Butler, J., DiZinno, J. A., Replogle, J., and Budowle, B. (1995). Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. BioTechniques. 18(4), 662~669.

(112) Yoshino, M., Imaizumi, K., Miyasaka, S., and Seta, S. (1994). Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Science International. 64, 191~198.

(113) You, J., Huang, L., Zhuang, J., and Mou, Z. (2014). Species-specific multiplex real-time PCR assay for identification of deer and common domestic animals. Food Science and Biotechnology. 23(1), 133~139.

参考文献をもっと見る