リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「黒毛和種牛の肥育時期による第一胃液性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

黒毛和種牛の肥育時期による第一胃液性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現に関する研究

尾形, 透 岐阜大学

2020.09.18

概要

黒毛和種肥育牛では,増体や肉質の向上を目的として導入時から長期間にわたって濃厚飼料が多給され,その結果,第一胃発酵が亢進し,第一胃液 pH の低下により亜急性第一胃アシドーシス(SARA)や代謝性疾患が発生している。乳牛では第一胃液 pH の変化に伴って細菌叢構成が変動し,第一胃粘膜上皮における遺伝子発現も変化することが知られている。しかし,黒毛和種肥育牛では第一胃の細菌叢構成や粘膜上皮の遺伝子発現について不明な点が多い。そのため,本研究は黒毛和種牛の肥育時期による第一胃液の性状と細菌叢構成および第一胃粘膜上皮の遺伝子発現の変化を明らかにする目的で実施された。

第1章では,黒毛和種牛の肥育時期による第一胃液性状と細菌叢構成の変化を明らかにする目的で,通常管理下の黒毛和種去勢牛 9 頭を対象として肥育前期 (10-14 カ月齢),中期 (15–22 カ月齢) および後期 (23-30 カ月齢) に第一胃液pH を連続測定,フィステル孔より第一胃液を採材して各種性状と次世代シークエンス法による細菌叢解析が行われた。その結果,第一胃液 pH は肥育時期の進行に伴い有意に低下,リポポリサッカライド (LPS)は中期と後期に前期に比べて有意な高値を,また,Firmicutes 門の構成比は中期に前期に比べて有意な低値を示すことを明らかにした。これらの結果は,黒毛和種牛の肥育中期や後期には第一胃液pH の低下,LPS の産生増加,セルロース分解菌の減少など濃厚飼料多給に伴い第一胃内環境が大きく変化することを示唆している。

第2章では,黒毛和種牛の肥育時期による第一胃液と第二胃液の性状および部位別の細菌叢構成を比較する目的で,第1章と同じ供試牛を用い,pH と各種性状のほか第一胃液,第一胃食渣および第二胃液の細菌叢解析が行われた。その結果,第一胃液 pH は第二胃液 pH に比べて前期と中期に有意な低値,後期には有意な高値を示し,細菌叢構成は第一胃液と第二胃液は類似していたが,第一胃食渣では第一胃液や第二胃液と異なる傾向を示すことを明らかにした。肥育後期に第一胃液pH が第二胃液 pH に比べて高値を示したことは,第一胃粘膜上皮からの重炭酸イオンの供給増加を示唆する重要な知見と思われる。これらのことは,黒毛和種牛の肥育後期には,長期的な濃厚飼料多給による第一胃液 pH の低下に対して,第一胃が緩衝作用を促進して適応していることを示唆している。

第3章では,肥育中期と後期の黒毛和種牛において,濃厚飼料増給に第一胃発酵が適応できるか否かを明らかにする目的で,各 3 頭を対象とし,通常の飼料を給与した対照区 (CON 区)と濃厚飼料割合を約 10%増加した濃厚飼料多給区 (HC 区) に区分して,第一胃液の pH,各種性状および細菌叢の解析が行われた。その結果,第一胃液pH は中期では HC 区で CON 区に比べて有意な低値を示し,後期では両区とも著しい低値を呈して有意差がみられず,揮発性脂肪酸 (VFA) および乳酸濃度はHC 区でCON 区に比べて有意な高値を示した。これらの結果は,黒毛和種牛の肥育後期には濃厚飼料割合の増加による第一胃の発酵と pH変動が良く制御されていることを示唆している。

第4章では,黒毛和種牛の肥育時期による第一胃粘膜上皮の遺伝子発現の変化を明らかにする目的で,第1章と同じ供試牛を用い,前期,中期および後期にフィステル孔を介し第一胃粘膜上皮を採取し,マイクロアレイ法により網羅的遺伝子解析が行われた。その結果,輸送関連遺伝子である SLC family 遺伝子は,中期に前期に比べて down-regulated (11/13),後期に中期に比べ up-regulated(12/19)と判定されるものが多く,VFA 輸送体および SCFA-/HCO -交換輸送体である SLC26A3 遺伝子の発現量は,中期に前期に比べて有意に低下し,後期には中期に比べて有意に増加することを明らかにした。これらの結果は,黒毛和種牛の肥育後期には第一胃粘膜上皮からのVFA 吸収と第一胃内への重炭酸イオン分 泌が促進され,長期間の濃厚飼料多給に適応している可能性を示唆している。

以上のように,本研究により,黒毛和種牛では肥育時期の進行に伴い第一胃液 pH と VFA濃度が低下し,多くのセルロース分解菌を含む Firmicutes 門の構成比が低下することが明らかになった。また,後期には中期に比べて SLC26A3 など VFA や重炭酸イオンの輸送に関連する遺伝子の発現量が増加することから,肥育後期には第一胃粘膜上皮から第一胃内 への重炭酸イオン供給が増加し,この緩衝作用により濃厚飼料多給に順応して恒常性を維持している可能性のあることが示唆された。本研究によって得られた所見は,黒毛和種肥育牛における健康の維持と代謝性疾患の予防に寄与すると考えられた。

この論文で使われている画像

参考文献

1) Abaker JA., Xu TL., Jin D., Chang GJ., Zhang, K. and Shen, XZ. (2017). Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet. J. Dairy Sci. 100, 666 ~ 678.

2) Allen, MS. (1997). Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J dairy Sci. 80, 1447 ~ 1462.

3) Al-Shanti, N. and Stewart, C. E. (2008). PD98059 enhances C2 myoblast differentiation through p38 MAPK activation: a novel role for PD98059. J. Endocrinol 198, 243 ~ 252.

4) AlZahal, O., Kebreab, E., France, J. and McBride, B. W. (2007). A mathematical approach to predicting biological values from ruminal pH measurements. J Dairy Sci. 90, 3777 ~ 3785.

5) Ametaj, B. N., Zebeli, Q., Saleem, F., Psychogios, N., Lewis, M. J., Dunn, S. M., Xia, J. and Wishart, D. S. (2010). Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics. 6, 583 ~ 594.

6) Aschenbach JR., Bilk S., Tadesse G., Stumpff, F. and Gabel, G. (2009). Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep. Am J Physiol Gastrointest Liver Physiol 296, G1098 ~ G1107.

7) Attia, N. E. (2016). Subacute ruminal acidosis in feedlot: incidence, clinical alterations and its sequelae. Adv. Anim. Vet. Sci. 4, 513 ~ 517.

8) Belanche, A., Doreau, M., Edwards, J. E., Moorby, J. M., Pinloche, E. and Newbold, C. J. (2012). Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 142, 1684 ~ 1692.

9) Benedeti, P. D. B., de Castro Silva, B., Pacheco, M. V. C., Serão, N. V. L., Carvalho Filho, I., Lopes, M. M., Marcondes, M. I., Mantovani, H. C., Filho, S. C. V., Detmann, E. and de Souza Duarte, M. (2018). Effects of grain processing methods on the expression of genes involved in volatile fatty acid transport and pH regulation, and keratinization in rumen epithelium of beef cattle. PloS one. 13, e0198963

10) Bevans, D. W., Beauchemin, K. A., Schwartzkopf-Genswein, K. S., McKinnon, J. J. and McAllister, T. A. (2005). Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. J. Anim. Sci. 83, 1116 ~ 1132.

11) Biddle A., Stewart L., Blanchard, J. and Leschine S. (2013). Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, 627 ~ 640.

12) Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Wittwer, C. T. and Vandesompele, J. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real- Time PCR Experiments. Clin. Chem, 611 ~ 622.

13) Cameron, P. J., Zembayashi, M., Lunt, D. K., Mitsuhashi, T., Mitsumoto, M., Ozawa, S. and Smith, S. B. (1994). Relationship between Japanese beef marbling standard and intramuscular lipid in the M. longissimus thoracis of Japanese Black and American Wagyu cattle. Meat science, 38, 361 ~ 364.

14) Chaucheyras-Durand, F. and Ossa, F. (2014). The rumen microbiome: Composition, abundance, diversity, and new ivestigative tools. The Professional Animal Scientist. 30, 1 ~ 12.

15) Chen, Y., Penner, G. B., Li, M., Oba, M. and Guan L. L. (2011). Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Appl Environ Microbiol. 77, 5770 ~ 5781.

16) Cheng, K. J., McCowan, R. P. and Costerton, J. W. (1979). Adherent epithelial bacteria in ruminants and their roles in digestive tract function. Am J Clin Nutr. 32, 139 ~ 148.

17) Cho, S. J., Cho, K. M., Shin, E. C., Lim, W. J., Hong, S. Y., Choi, B. R., Kang, J. M, Lee, S. M., Kim, Y. H, Kim, H. and Yun, H. D. (2006). 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J Microbiol Biotechnol. 16, 92 ~ 101.

18) Contreras, A. V., Cocom-Chan, B., Hernandez-Montes, G., Portillo-Bobadilla, T. and Resendis-Antonio, O. (2016). Host-microbiome interaction and cancer: potential application in precision medicine. Front. Physiol. 7, 606. 10.3389/fphys.2016.00606.

19) Creevey, C. J., Kelly, W. J., Henderson, G. and Leahy, S. C. (2014). Determining the culturability of the rumen bacterial microbiome. Microbial Biotechnology. 7, 467 ~ 479

20) Dado, R. G. and Allen, M. S. (1993). Continuous computer acquisition of feed and water intakes, chewing, reticular motility, and ruminal pH of cattle. J. Dairy Sci. 76, 1589 ~ 1600.

21) De Mulder, T., Goossens, K., Peiren, N., Vandaele, L., Haegeman, A., De Tender, C., Ruttink, T., de Wiele, TV., and De Campeneere, S. (2017). Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural. FEMS Microbiol Ecol. 93, fiw251.

22) Dhup, S., Kumar Dadhich, R., Ettore Porporato, P. and Sonveaux, P. (2012). Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 18, 1319 ~ 1330.

23) Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J. and Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology. 172, 22 ~ 33.

24) Dohme, F., DeVries, T. J. and Beauchemin, K. A. (2008). Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: ruminal pH. J. Dairy Sci. 91, 3554 ~ 3567

25) Duffield, T., Plaizier, J.C., Fairfield, A., Bagg, R., Vessie, G., Dick, P., Wilson, J., Aramini, J. and McBride, B. (2004). Comparison of techniques for measurement of rumen pH in lactating dairy cows. J. Dairy Sci. 87, 59 ~ 66

26) Edwards, J. E., Huws, S. A., Kim, E. J. and Kingston-Smith, A.H. (2007). Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen. FEMS microbiol ecol. 62, 323 ~ 335.

27) Emmanuelle. H., Le Gall, G., Laverde-Gomez, J. A., Mukhopadhya, I., Flint, H. J. and Juge, N. (2018). Mechanistic insights into the cross-feeding of Ruminococcus gnavus and Ruminococcus bromii on host and dietary carbohydrates. Frontiers in microbiology. 9, 2558.

28) Enemark, J. M. D. (2008). The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. The Veterinary Journal. 176, 32 ~ 43.

29) Falk, M., Münger, A. and Dohme-Meier, F. (2016). A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation. Journal of dairy science. 99, 1951 ~ 1955.

30) Fernando, S. C., Purvis, H. T., Najar, F. Z., Sukharnikov, L. O., Krehbiel, C. R., Nagaraja, T. G., Roe, U. and DeSilva, U. (2010). Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 76, 7482 ~ 7490.

31) Garrett, E. F., Nordlund, K. V., Goodger, W. J. and Oetzel, G. R. (1997). A cross-sectional field study investigating the effect of periparturient dietary management on ruminal pH in early lactation dairy cows. J. Dairy Sci. 80, 169

32) Goad, D. W., Goad, C. L., and Nagaraja, T. G. (1998). Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers. J. Anim. Sci. 76, 234 ~ 241.

33) Golder, H. M., Denman, S. E., McSweeney, C., Celi, P. and Lean, I. J. (2014). Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers. Journal of Dairy Sci. 97, 5131 ~ 5150.

34) Gotoh, Takafumi., and Seon-Tea, Joo. (2016). Characteristics and Health Benefit of Highly Marbled Wagyu and Hanwoo Beef. Korean J. Food Sci. 36, 709 ~ 718.

35) Gotoh, T., Nishimura, T., Kuchida, K., and Mannen, H. (2018). The Japanese Wagyu beef industry: current situation and future prospects—a review. Asian-australas. J. Anim. Sci. 31, 933.

36) Gozho, G. N., Plaizier, J. C., Krause, D. O., Kennedy, A. D. and Wittenberg, K. M. (2005). Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J Dairy Sci. 88, 1399 ~ 1403.

37) Gozho, G. N., Krause, D. O., Plaizier, J. C. (2006). Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers. J Dairy Sci. 89, 4404 ~ 4413

38) Guo, Y., Xu, X., Zou, Y., Yang, Z., Li, S. and Cao, Z. (2013). Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. J. Anim. Sci. Biotechnol. 4, 31.

39) Guo, J., Chang, G., Zhang, K., Xu, L., Jin, D., Bilal, M. S. and Shen, X. (2017). Rumen- derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget. 8, 46769 ~ 46780.

40) Hammarstedt, A., Jansson, P. A., Wesslau, C., Yang, X. and Smith, U. (2003). Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem. Biophys. Res. Commun. 301, 578 ~ 582.

41) Hirabayashi, H., Kawashima, K., Okimura, T., Tateno, A., Suzuki, A., Asakuma, S., Isobe, N., Obitsu, T., Sugino, T. and Kushibiki, S. (2017). Effect of nutrient levels during the far‐off period on postpartum productivity in dairy cows. Anim. Sci. J. 88, 1162 ~ 1170.

42) Hollmann, M., Miller, I., Hummel, K., Sabitzer, S., Metzler-Zebeli, B. U., Razzazi- Fazeli, E. and Zebeli, Q. (2013). Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet. PLoS One. 8, e81602.

43) Hook, S. E., Steele, M. A., Northwood, K. S., Dijkstra, J., France, J., Wright, A. D. G. and McBride, B. W. (2011). Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. FEMS Microbiology Ecology. 78, 275 ~ 284.

44) Hummel, J., Sudekum, K.H., Bayer, D., Ortmann, S., Streich, W. J., Hatt, J. M. and Clauss, M. (2009). Physical characteristics of reticuloruminal contents of oxen in relation to forage type and time after feeding. J. Anim. Physiol. Anim. Nutr. (Berl.) 93, 209 ~ 220.

45) 一条 茂. (1993). 家畜におけるビタミ E とセレンの重要性について. 獣畜新報. 46, 109 ~ 114.

46) 伊藤担道., 丹羽鞘負. (1987). Natural products 含有の anti-oxidant activity とその臨床効果.フリーラジカルの臨床. 近藤元治監修. 日本医学館.

47) Iwai, S., Weinmaier, T., Schmidt, B. L., Albertson, D. G., Poloso, N. J., Dabbagh, K. and DeSantis, T. Z. (2016). Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PloS one. 11, e0166104.

48) Kenney, N. M., Vanzant, E. S., Harmon, D. L. and McLeod, K. R. (2015). Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet. J. Anim. Sci. 93, 2336 ~ 2348.

49) Khafipour, E., Krause, D. O. and Plaizier, J. C. (2009). A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 92, 1060 ~ 1070.

50) Kim, Y. H., Nagata, R., Ohtani, N., Ichijo, T., Ikuta, K. and Sato, S. (2016). Effects of Dietary Forage and Calf Starter Diet on Ruminal pH and Bacteria in Holstein Calves during Weaning Transition. Front Microbiol. 7, 1575.

51) Kim, Y. H., Toji N., Kizaki K., Kushibiki S., Ichijo T. and Sato S. (2016). Effects of dietary forage and calf starter on ruminal pH and transcriptomic adaptation of the rumen epithelium in Holstein calves during the weaning transition. Physiological Genomics. 48, 803.

52) Kim, Y. H., Nagata, R., Ohkubo, A., Ohtani, N., Kushibiki S., Ichijo T. and Sato S. (2018). Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Veterinary Research. 14, 310.

53) Kimura, A., Sato, S., Kato, T., Ikuta, K., Yamagishi, N., Okada, K. and Ito, K. (2012). Relationship between pH and temperature in the ruminal fluid of cows, based on a radio- transmission ph-measurement system. J Vet Med Sci. 74, 1023 ~ 1028.

54) Kizaki, K., Kizaki, A. S., Furusawa, T., Takahashi, T., Hosoe, M. and Hashizume, K. (2013). Differential neutrophil gene expression in early bovine pregnancy. Reprod. Biol. Endocrinol. 11, 6.

55) Kläring, K., Hanske, L., Bui, N., Charrier, C., Blaut, M., Haller, D., Plugge, M. C. and Clavel, T. (2013). Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate- producing bacterium from the mouse intestine. Int. J. Syst. Evol. Microbiol. 63, 4606~ 4612.

56) Klieve, A. V., O'Leary, M. N., McMillen, L. and Ouwerkerk, D. (2007). Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a barley diet. J Appl Microbiol. 103, 2065 ~ 2073.

57) Koike, S. and Kobayashi, Y., (2001). Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204, 361 ~ 366.

58) Krause, K. M. and Oetzel, G. R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: A review.Anim. Feed Sci. Technol. 126, 215 ~ 236.

59) LaMonte, G., Tang, X., Chen, J. L. Y., Wu, J., Ding, C. K. C., Keenan, M. M., Sangokoya, C., Kung, H., ILkayeva, O., Boros, L. G., Newgard, C. B. and Chi, J. (2013). Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer & metabolism. 1, 23.

60) Li, M., Zhou, M., Adamowicz, E. and Basarab, J. A. (2012). Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Vet Microbiol. 1, 72 ~ 80

61) Li, X., Liu, L., Yang, S., Song, N., Zhou, X., Gao, J., Yu, N., Shan, L., Wang, Q., Liang, J., Xuan, C., Wang, Y., Shang, Y. and Shi, L. (2014). Histone demethylase KDM5B is a key regulator of genome stability. Proc. Natl. Acad. Sci. U.S.A. 111, 7096 ~ 7101.

62) Liu, J. H., Xu, T. T., Liu, Y. J., Zhu, W. Y. and Mao, S. Y. (2013). A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R232 ~ R241.

63) "Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25, 402 ~ 408"

64) Louis, D., AlZahal, Ousama., Steele, M. A., Matthews, J. C. and McBride, B. W. (2014). Transcriptomic changes in ruminal tissue induced by the periparturient transition in dairy cows. Am J Anim Vet Sci. 9, 36 ~ 45.

65) Lozupone, C. and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228 ~ 8835.

66) Lu, P. J., Hsu, P. I., Chen, C. H., Hsiao, M., Chang, W. C., Tseng, H. H., Lin, K. H., Chuah, S. K. and Chen, H. C. (2010). Gastric juice acidity in upper gastrointestinal diseases. World J. Gastroenterol. 16, 5496.

67) Mani, V., Weber, TE., Baumgard, LH. and Gabler, NK. (2012). Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci. 90, 1452 ~ 1465.

68) Mao, S. Y., R. Y. Zhang, D. S. Wang, and W. Y. Zhu. (2013). Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe. 24, 12 ~ 19.

69) McCann, J. C., Luan, S., Cardoso, F. C., Derakhshani, H., Khafipour, E. and Loor, J. J. (2016). Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front. Microbiol. 7, 701.

70) Memon, MA., Wang, Y., Xu, T., Ma, N., Zhang, H., Roy, AC., Aabdin, ZU. and Shen X. (2019). Lipopolysaccharide induces oxidative stress by triggering MAPK and Nrf2 signalling pathways in mammary glands of dairy cows fed a high-concentrate diet. Microb Pathog. 128, 268 ~ 275.

71) Merry, R. J., and MacAllan, A. B. (1983). A comparison of the chemicalcomposition of mixed bacteria harvested from liquid and solidfraction of rumen digesta. Br. J. Nutr. 50, 701 ~ 709.

72) 三森眞琴. (2014). ルーメン機能を支える微生物. 家畜感染症学会誌. 3, 41-44

73) Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, Nick., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. and Groop, L. C. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267 ~ 273.

74) Mueller R. E., Iannotti E. L. and Asplund J. M. (1984). Isolation and identification of adherent epimural bacteria during succession in young lambs. Appl. Environ. Microbiol. 47, 724 ~ 730.

75) Naeem, A., Drackley, J. K., Stamey, J. and Loor, J. J. (2012). Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. J. Dairy. Sci. 95, 1807 ~ 1820.

76) Nagaraja, T. G. and Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J.Dairy Sci. 90, E17 ~ E38.

77) Nagata, R., Kim, Y. H., Ohkubo, A., Kushibiki, S., Ichijo, T. and Sato, S. (2017). Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. J Dairy Sci. 101, 4424 ~ 4436.

78) Nagata, R., Kim, Y. H., Ohkubo, A., Kushibiki, S., Ichijo, T. and Sato, S. (2018). Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. J. Dairy Sci. 101, 4424 ~ 4436.

79) 日本飼養標準 & 肉用牛. (2008). 独立行政法人農業・食品産業技術総合研究機構編, 中央畜産会, 東京 (2008 年).

80) Neubauer, V., Petri, RM., Humer, E., Kröger, I., Mann, E., Reisinger, N., Wagner, M. and Zebeli, Q. (2018). High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. J. Dairy Sci. 101, 2335 ~ 2349.

81) Nocek, J. E. and Tamminga, S. (1991). Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 74, 3598~ 3629.

82) Oka, A., Maruo, Y., Miki, T., Yamasaki, T. and Saito, T. (1998). Influence of vitamin A on the quality of beef from the Tajima strain of Japanese Black cattle. Meat Sci. 48, 159~ 167.

83) Paillard, D., McKain, N., Chaudhary, L. C., Walker, N. D., Pizette, F., Koppova, I., McEwan, N. R., Kopečný, J., Vercoe, P. E., Louis, P. and Wallace, R. J. (2007). Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek. 91, 417 ~ 422.

84) Peng, S., Yin, J., Liu, X., Jia, B., Chang, Z., Lu, H., Jiang, N. and Chen, Q. (2015). First insights into the microbial diversity in the omasum and reticulum of bovine using Illumina sequencing. J. Appl. Genet. 56, 393 ~ 401.

85) Penner, G. B., Steele, M. A., Aschenbach, J. R. and McBride, B. W. (2011). Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets. J. Anim. Sci. 89, 1108 ~ 1119.

86) Petri R. M., Schwaiger T., Penner G. B., Beauchemin K. A., Forster R. J. and McKinnon J. J. (2013). Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One. 8, e83424.

87) Piao da C., Wang, T., Lee, J. S., Vega, R.S., Kang, S. K., Choi, Y. J. and Lee, H. G. (2015). Determination of reference intervals for metabolic profile of Hanwoo cows at early, middle and late gestation periods. J. Anim. Sci. Biotechnol. 6, 9.

88) Pitta, D. W., Pinchak, W. E., Dowd, S. E., Osterstock, J., Gontcharova, V., Youn, E., Dorton. K., Yoon. I., Min. B.R., Fulford. J. D., Malinowski. P. and Wickersham, T. A. (2010). Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb. Ecol. 59, 511 ~ 522.

89) Plaizier, J. C., Krause, D. O., Gozho, G. N. and McBride, B. W. (2008). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J. 176, 21 ~ 31.

90) Pruesse, E., Quast, C., Knittel, K., Fuchs, BM., Ludwig, W., Peplies, J. and Glockner, FO. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188 ~ 7196.

91) Riemann, A., Ihling, A., Schneider, B., Gekle, M. and Thews, O. (2013) Impact of Extracellular Acidosis on Intracellular pH Control and Cell Signaling in Tumor Cells. (ed. Van Huffel S., Naulaers G., Caicedo A., Bruley D.F., Harrison D.K.) Oxygen Transport to Tissue XXXV. Advances in Experimental Medicine and Biology, vol 789. (Springer, New York, NY, 2013)

92) Roche, JF. (2006). The effect of nutritional management of the dairy cow on reproductive efficiency. Anim. Reprod. Sci. 96, 282 ~ 296.

93) Safonova, I., Darimont, C., Amri, E. Z., Grimaldi, P., Ailhaud, G., Reichert, U. and Shroot, B. (1994). Retinoids are positive effectors of adipose cell differentiation. Mol. Cell. Endocrinol. 104, 201 ~ 211.

94) Sato, S., Ikeda, A., Tsuchiya, Y., Ikuta, K., Murayama, I., Kanehira, M., Okada, K. and Mizuguchi, H. (2012). Diagnosis of subacute ruminal acidosis (SARA) by continuous reticular pH measurements in cows. Vet Res Com. 36, 201 ~ 205.

95) Sato, S. (2016). Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim. Sci. J. 87, 168 ~ 177.

96) Schären, M., Kiri, K., Riede, S., Gardener, M., Meyer, U., Hummel, J., Urich, T., Breves, G. and Dänicke, S. (2017). Alterations in the Rumen Liquid-, Particle- and Epithelium-Associated Microbiota of Dairy Cows during the Transition from a Silage- and Concentrate-Based Ration to Pasture in Spring. Front Microbiol. 8, 744.

97) Schlau, N., Guan, L. L., and Oba, M. (2012). The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers. J. Dairy Sci. 95, 5866 ~ 5875.

98) Schloss, PD., Westcott, SL., Ryabin, T., Hall, JR., Hartmann, M., Hollister, EB., Ryan, AL., Brian, BO., Donovan, HP., Courtney, JR., Jason, WS., Blaz, S., Gerhard, GT., David, JVH. and Carolyn, FW. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 ~ 7541.

99) Sehgal, S. N. (1998). Rapamune® (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin. Biochem. 31, 335 ~ 340.

100) Seo, B., Yoo, JE., Lee, YM. and Ko, G. (2017). Merdimonas faecis gen. nov., sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 67, 2430 ~ 2435.

101) Sgorlon, S., Stradaioli, G., Gabai, G. and Stefanon, B. (2008). Variation of starch and fat in the diet affects metabolic status and oxidative stress in ewes. Small Ruminant Res. 74, 123 ~ 129.

102) Shi, Y. and Weimer, PJ. (1992). Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Appl Environ Microbiol. 58, 2583 ~ 2591.

103) Shirouchi, B., Albrecht, E., Nuernberg, G., Maak, S., Olavanh, S., Nakamura, Y., Sato, M., Gotoh, T. and Nuernberg, K. (2014). Fatty acid profiles and adipogenic gene expression of various fat depots in Japanese Black and Holstein steers. Meat sci. 96, 157~ 164.

104) Steele, M. A., Croom, J., Kahler, M., AlZahal, O., Hook, S. E., Plaizier, K. and McBride, B. W. (2011). Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. Am J Physiol Regul Integr Comp Physiol. 300, R1515 ~ R1523.

105) Steele, M.A., Dionissopoulos, L., AlZahal, O., Doelman, J. and McBride, B.W. (2011). Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme. J. Dairy Sci. 95, 318 ~ 327.

106) Steele, M. A., Schiestel, C., AlZahal, O., Dionissopoulos, L., Laarman, A. H., Matthews, J. C., & McBride, B. W. (2015). The periparturient period is associated with structural and transcriptomic adaptations of rumen papillae in dairy cattle. J. Dairy Sci. 98, 2583 ~ 2595.

107) Van Gylswyk, N. O. (1995). Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Evol. Microbiol. 45, 297 ~ 300.

108) Wang, H., Pan, X., Wang, C., Wang, M. and Yu, L. (2015). Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows. Anim. Prod. Sci. 55, 189~ 193.

109) Watanabe, Y., Kim, YH., Kushibiki, S., Ikuta, K., Ichijo, T. and Sato, S. (2019). Effects of active dried Saccharomyces cerevisiae on ruminal fermentation and bacterial community during the short-term ruminal acidosis challenge model in Holstein calves. J. Dairy Sci. 102, 6518 ~ 6531.

110) Wetzels, S. U., Mann, E., Metzler-Zebeli, B. U., Pourazad, P., Qumar, M.,Klevenhusen, F., Pinior, B., Wagner, M., Zebeli, Q. andSchmitz-Esser, S. (2016). Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle. Front Microbiol. 7, 274.

111) Wu, H., Ying, M. and Hu, X. (2012) Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget. 7, 40621.

112) Wu, S., Li, C., Huang, W., Li, W. and Li, R. W. (2012). Alternative splicing regulated by butyrate in bovine epithelial cells. PloS one. 7, e39182.

113) Wu, H., Ying, M. and Hu, X. (2016). Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget. 7, 40621.

114) Yang, W., Shen, Z. and Martens, H. (2012). An energy-rich diet enhances expression of Na+/H+ exchanger isoform 1 and 3 messenger RNA in rumen epithelium of goat. J Anim Sci. 90, 307 ~ 317.

115) Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid. Redox. Signal. 10, 179 ~206.

116) Zebeli, Q., Tafaj, M., Weber, I., Dijkstra, J., Steingass, H. and Drochner, W. (2007). Effects of varying dietary forage particle size in two concentrate levels on chewing activity, ruminal mat characteristics, and passage in dairy cows. J Dairy Sci. 90, 1929~ 1942.

117) Zhang, C., Hazarika, P., Ni, X., Weidner, D. A. and Duvic, M. (2002). Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. Clin. Cancer Res. 8, 1234 ~ 1240.

118) Zhang, R., Zhu, W. and Mao, S. (2016). High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairycattle. J. Anim. Sci. Biotechnol. 7, 42.

119) Zhang, RY., Jin, W., Feng, PF., Liu, JH. and Mao, SY. (2018). High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal. 12, 2511 ~ 2520.

120) Zhao, K., Chen, Y. H., Penner, G. B., Oba, M. and Guan, L. L. (2017). Transcriptome analysis of ruminal epithelia revealed potential regulatory mechanisms involved in host adaptation to gradual high fermentable dietary transition in beef cattle. BMC Genomics. 18, 976.

121) Zhu, Z, Noel, S. J., Difford, G. F., Al-Soud, W. A., Brejnrod, A., Sørensen, S. J., Lassen, J., Løvendahl, P. and Højberg, O. (2017). Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period. PLoS One. 12, e0187858.Abaker JA., Xu TL., Jin D., Chang GJ., Zhang, K. and Shen, XZ. (2017). Lipopolysaccharide derived from the digestive tract provokes oxidative stress in the liver of dairy cows fed a high-grain diet. J. Dairy Sci. 100, 666 ~ 678.

参考文献をもっと見る