リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「宇宙論的加速器物理を用いた新粒子探索」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

宇宙論的加速器物理を用いた新粒子探索

KIM, SURO 神戸大学

2021.03.25

概要

In this thesis, we propose a novel method for probing spins of new heavy particles from cos- mological observations. Within the so-called cosmological collider program, imprints of new particles on primordial non-Gaussianities have been studied intensively. In particular, their non-analytic features in the soft limit provide a smoking gun for new particles at the inflation scale. While this approach is powerful to probe particles of the mass near the Hubble scale, the signal is exponentially suppressed for heavy particles. The main purpose of this thesis is to explore a new approach to probing spins of heavy particles from signs of Wilson coefficients of the inflaton effective action and the corresponding primordial non-Gaussianities. The positivity bound is a well-known consequence of unitarity and analyticity of scattering amplitudes, which states that some of effective interactions of inlaton is universally positive. We find that the sign of effective interactions which are not constrained by the positivity bound depends on the spins of intermediate heavy particles, hence the sign can be used to probe spins of heavy particles generating the effective operator. We also study cosmological applications.

参考文献

[1] X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 1004 (2010) 027 [0911.3380].

[2] D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D85 (2012) 103520 [1109.0292].

[3] T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [1211.1624].

[4] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, 1503.08043.

[5] X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D81 (2010) 063511 [0909.0496].

[6] V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 1211 (2012) 047 [1204.4207].

[7] E. Sefusatti, J. R. Fergusson, X. Chen and E. P. S. Shellard, Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background, JCAP 1208 (2012) 033 [1204.6318].

[8] J. Norena, L. Verde, G. Barenboim and C. Bosch, Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias, JCAP 1208 (2012) 019 [1204.6324].

[9] R. Emami, Spectroscopy of Masses and Couplings during Inflation, JCAP 1404 (2014) 031 [1311.0184].

[10] J. Liu, Y. Wang and S. Zhou, Inflation with Massive Vector Fields, JCAP 1508 (2015) 033 [1502.05138].

[11] E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of Massive Primordial Fields on Large-Scale Structure, JCAP 1602 (2016) 017 [1504.05993].

[12] F. Schmidt, N. E. Chisari and C. Dvorkin, Imprint of inflation on galaxy shape correlations, JCAP 1510 (2015), no. 10, 032 [1506.02671].

[13] X. Chen, M. H. Namjoo and Y. Wang, Quantum Primordial Standard Clocks, JCAP 1602 (2016), no. 02, 013 [1509.03930].

[14] L. V. Delacretaz, T. Noumi and L. Senatore, Boost Breaking in the EFT of Inflation, JCAP 1702 (2017), no. 02, 034 [1512.04100].

[15] B. Bonga, S. Brahma, A.-S. Deutsch and S. Shandera, Cosmic variance in inflation with two light scalars, JCAP 1605 (2016), no. 05, 018 [1512.05365].

[16] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, JCAP 1710 (2017), no. 10, 058 [1606.00513].

[17] H. Lee, D. Baumann and G. L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [1607.03735].

[18] L. V. Delacretaz, V. Gorbenko and L. Senatore, The Supersymmetric Effective Field Theory of Inflation, JHEP 03 (2017) 063 [1610.04227].

[19] P. D. Meerburg, M. Mnchmeyer, J. B. Muoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP 1703 (2017), no. 03, 050 [1610.06559].

[20] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett. 118 (2017), no. 26, 261302 [1610.06597].

[21] X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP 04 (2017) 058 [1612.08122].

[22] A. Kehagias and A. Riotto, On the Inflationary Perturbations of Massive Higher-Spin Fields, JCAP 1707 (2017), no. 07, 046 [1705.05834].

[23] H. An, M. McAneny, A. K. Ridgway and M. B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP 06 (2018) 105 [1706.09971].

[24] X. Tong, Y. Wang and S. Zhou, On the Effective Field Theory for Quasi-Single Field Inflation, JCAP 1711 (2017), no. 11, 045 [1708.01709].

[25] A. V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly Coupled Quasi-Single Field Inflation, JCAP 1801 (2018), no. 01, 041 [1710.03054].

[26] H. An, M. McAneny, A. K. Ridgway and M. B. Wise, Non-Gaussian Enhancements of Galactic Halo Correlations in Quasi-Single Field Inflation, Phys. Rev. D97 (2018), no. 12, 123528 [1711.02667].

[27] S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP 05 (2018) 011 [1711.03988].

[28] S. Riquelme M., Non-Gaussianities in a two-field generalization of Natural Inflation, JCAP 1804 (2018), no. 04, 027 [1711.08549].

[29] G. Franciolini, A. Kehagias and A. Riotto, Imprints of Spinning Particles on Primordial Cosmological Perturbations, JCAP 1802 (2018), no. 02, 023 [1712.06626].

[30] R. Saito and T. Kubota, Heavy Particle Signatures in Cosmological Correlation Functions with Tensor Modes, JCAP 1806 (2018), no. 06, 009 [1804.06974].

[31] G. Cabass, E. Pajer and F. Schmidt, Imprints of Oscillatory Bispectra on Galaxy Clustering, JCAP 1809 (2018), no. 09, 003 [1804.07295].

[32] Y. Wang, Y.-P. Wu, J. Yokoyama and S. Zhou, Hybrid Quasi-Single Field Inflation, JCAP 1807 (2018), no. 07, 068 [1804.07541].

[33] E. Dimastrogiovanni, M. Fasiello and G. Tasinato, Probing the inflationary particle content: extra spin-2 field, JCAP 1808 (2018), no. 08, 016 [1806.00850].

[34] L. Bordin, P. Creminelli, A. Khmelnitsky and L. Senatore, Light Particles with Spin in Inflation, JCAP 1810 (2018), no. 10, 013 [1806.10587].

[35] W. Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger Effect on Primordial Spectra, 1810.09815.

[36] N. Arkani-Hamed, D. Baumann, H. Lee and G. L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, 1811.00024.

[37] S. Kumar and R. Sundrum, Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, 1811.11200.

[38] G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Shapes of gravity: Tensor non-Gaussianity and massive spin-2 fields, 1812.07571.

[39] Y.-P. Wu, Higgs as heavy-lifted physics during inflation, 1812.10654.

[40] D. Anninos, V. De Luca, G. Franciolini, A. Kehagias and A. Riotto, Cosmological Shapes of Higher-Spin Gravity, JCAP 1904 (2019), no. 04, 045 [1902.01251].

[41] M. McAneny and A. K. Ridgway, New Shapes of Primordial Non-Gaussianity from Quasi-Single Field Inflation with Multiple Isocurvatons, 1903.11607.

[42] L. Li, T. Nakama, C. M. Sou, Y. Wang and S. Zhou, Gravitational Production of Superheavy Dark Matter and Associated Cosmological Signatures, 1903.08842.

[43] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29 [1207.7214].

[44] CMS Collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61 [1207.7235].

[45] B. W. Lee, C. Quigg and H. B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519.

[46] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178].

[47] D. Baumann, D. Green, H. Lee and R. A. Porto, Signs of Analyticity in Single-Field Inflation, Phys. Rev. D93 (2016), no. 2, 023523 [1502.07304].

[48] C. Cheung and G. N. Remmen, Positive Signs in Massive Gravity, JHEP 04 (2016) 002 [1601.04068].

[49] C. de Rham, S. Melville, A. J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017), no. 8, 081702 [1702.06134].

[50] C. de Rham, S. Melville, A. J. Tolley and S.-Y. Zhou, Massive Galileon Positivity Bounds, JHEP 09 (2017) 072 [1702.08577].

[51] C. de Rham, S. Melville, A. J. Tolley and S.-Y. Zhou, UV complete me: Positivity Bounds for Particles with Spin, JHEP 03 (2018) 011 [1706.02712].

[52] B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett. 120 (2018), no. 16, 161101 [1710.02539].

[53] C. de Rham, S. Melville and A. J. Tolley, Improved Positivity Bounds and Massive Gravity, JHEP 04 (2018) 083 [1710.09611].

[54] C. de Rham, S. Melville, A. J. Tolley and S.-Y. Zhou, Positivity Bounds for Massive Spin-1 and Spin-2 Fields, JHEP 03 (2019) 182 [1804.10624].

[55] Y. Hamada, T. Noumi and G. Shiu, Weak Gravity Conjecture from Unitarity and Causality, 1810.03637.

[56] W.-M. Chen, Y.-T. Huang, T. Noumi and C. Wen, Unitarity bounds on charged/neutral state mass ratio, 1901.11480.

[57] B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ Positivity, Weak Gravity Conjecture, and Modified Gravity, 1902.03250.

[58] M. Herrero-Valea, I. Timiryasov and A. Tokareva, To Positivity and Beyond, where Higgs-Dilaton Inflation has never gone before, 1905.08816.

[59] D. Baumann, D. Green and T. Hartman, Dynamical Constraints on RG Flows and Cosmology, 1906.10226.

[60] S. Kim, T. Noumi, K. Takeuchi and S. Zhou, Heavy Spinning Particles from Signs of Primordial Non-Gaussianities: Beyond the Positivity Bounds, JHEP 12 (2019) 107 [1906.11840].

[61] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].

[62] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D72 (2005) 043514 [hep-th/0506236].

[63] X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979 [1002.1416].

[64] Y. Wang, Inflation, Cosmic Perturbations and Non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109–166 [1303.1523].

[65] J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603].

[66] F. Bernardeau and J.-P. Uzan, NonGaussianity in multifield inflation, Phys. Rev. D 66 (2002) 103506 [hep-ph/0207295].

[67] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [0709.0293].

[68] N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, 1709.04891.

[69] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053–1057.

[70] O. Schlotterer, Scattering amplitudes in open superstring theory. PhD thesis, Munich U., 2011.

[71] T. Han, J. D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D59 (1999) 105006 [hep-ph/9811350].

[72] K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671–710 [1105.3735].

[73] C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [1401.4173].

[74] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370–3373 [hep-ph/9905221].

[75] N. Kaloper and A. D. Linde, Inflation and large internal dimensions, Phys. Rev. D59 (1999) 101303 [hep-th/9811141].

[76] N. Kaloper, Bent domain walls as brane worlds, Phys. Rev. D60 (1999) 123506 [hep-th/9905210].

[77] T. Nihei, Inflation in the five-dimensional universe with an orbifold extra dimension, Phys. Lett. B465 (1999) 81–85 [hep-ph/9905487].

[78] H. B. Kim and H. D. Kim, Inflation and gauge hierarchy in Randall-Sundrum compactification, Phys. Rev. D61 (2000) 064003 [hep-th/9909053].

[79] A. Lukas, B. A. Ovrut and D. Waldram, Boundary inflation, Phys. Rev. D61 (2000) 023506 [hep-th/9902071].

[80] R. Maartens, D. Wands, B. A. Bassett and I. Heard, Chaotic inflation on the brane, Phys. Rev. D62 (2000) 041301 [hep-ph/9912464].

[81] G. F. Giudice, E. W. Kolb, J. Lesgourgues and A. Riotto, Transdimensional Physics and Inflation, Phys. Rev. D66 (2002) 083512 [hep-ph/0207145].

[82] S. H. Im, H. P. Nilles and A. Trautner, Exploring extra dimensions through inflationary tensor modes, JHEP 03 (2018) 004 [1707.03830].

[83] S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev. D85 (2012) 126009 [1201.6449].

[84] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, 1709.02813.

[85] P. Creminelli, On non-Gaussianities in single-field inflation, JCAP 0310 (2003) 003 [astro-ph/0306122].

[86] X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP 09 (2018) 022 [1805.02656].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る