リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「SU(3)ゲージ場を伴うインフレーション」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

SU(3)ゲージ場を伴うインフレーション

髙, 鵬遠 神戸大学

2022.03.25

概要

A coupling between the inflaton and the U(1) gauge field with a kinetic gauge function can give a stable anisotropic attractor solution, which is a counter-example for the cosmic no-hair conjecture. If the gauge field is of conventional SU(2) (with Pauli matrices as the generators), the nonlinear coupling will destabilize the anisotropic solution, which takes back the solution to no-hair(energy density of gauge field tends to 0). As there is SU(3) gauge field in the standard model of particle physics, it is natural to consider an SU(3) gauge field in inflation. From the viewpoint of group theory, that the di↵erences of the structure constants in the SU(3) group may give di↵erent e↵ective coupling between di↵erent gauge components and the inflaton, which may give di↵erent behavior compared to that of SU(2). Also, there are other two SU(2) subgroups in the SU(3) group. In each of the two SU(2) subgroups, there is one generator which is a combination of the Cartan generators. This di↵erence may also give di↵erent behavior compared to the conventional SU(2).

Thus in this thesis, we study inflationary universes with an SU(3) gauge field coupled to an inflaton through a gauge kinetic function. In the general case, similar to that of SU(2), the nonlinear coupling between gauge components destabilizes the anisotropic solution. However, we found several features in inflation with an SU(3) gauge field, which do not appear in inflation with an conventional SU(2) gauge field. Firstly, in some special cases, anisotropy can generate transiently even from an isotropic initial condition. This is di↵erent from that of conventional SU(2) in which isotropy solution will keep on from isotropic condition. Secondly, we found for the other two SU(2) subgroups in the SU(3) group, in which there is one generator which is a combination of the Cartan generators, the gauge components corresponding to the Cartan generators can survive from the nonlinear coupling, which results in an anisotropic solution. It occurs due to flat directions in the potential of the gauge field. This can be generalized to Lie groups whose rank is higher than one. Thus, the conventional SU(2) gauge field has a specialty among general non-Abelian gauge fields in inflation.

参考文献

[1] Robert M. Wald. Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D, 28:2118–2120, 1983. doi: 10.1103/PhysRevD.28.2118.

[2] L. H. Ford. INFLATION DRIVEN BY A VECTOR FIELD. Phys. Rev. D, 40:967, 1989. doi: 10.1103/PhysRevD.40.967.

[3] Alexey Golovnev, Viatcheslav Mukhanov, and Vitaly Vanchurin. Vector Inflation. JCAP, 06:009, 2008. doi: 10.1088/1475-7516/2008/06/009.

[4] Sugumi Kanno, Masashi Kimura, Jiro Soda, and Shuichiro Yokoyama. Anisotropic Inflation from Vector Impurity. JCAP, 08:034, 2008. doi: 10.1088/1475-7516/2008/ 08/034.

[5] Lotty Ackerman, Sean M. Carroll, and Mark B. Wise. Imprints of a Primordial Preferred Direction on the Microwave Background. Phys. Rev. D, 75:083502, 2007. doi: 10.1103/PhysRevD.75.083502. [Erratum: Phys. Rev. D 80, 069901(E) (2009)].

[6] Burak Himmetoglu, Carlo R. Contaldi, and Marco Peloso. Instability of anisotropic cosmological solutions supported by vector fields. Phys. Rev. Lett., 102:111301, 2009. doi: 10.1103/PhysRevLett.102.111301.

[7] Gilles Esposito-Far`ese, Cyril Pitrou, and Jean-Philippe Uzan. Vector theories in cosmology. Phys. Rev. D, 81:063519, 2010. doi: 10.1103/PhysRevD.81.063519.

[8] Masaaki Watanabe, Sugumi Kanno, and Jiro Soda. Inflationary Universe with Anisotropic Hair. Phys. Rev. Lett., 102:191302, 2009. doi: 10.1103/PhysRevLett. 102.191302.

[9] Jiro Soda. Statistical Anisotropy from Anisotropic Inflation. Class. Quant. Grav., 29:083001, 2012. doi: 10.1088/0264-9381/29/8/083001.

[10] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda. Gauge Fields and Inflation. Phys. Rept., 528:161–261, 2013. doi: 10.1016/j.physrep.2013.03.003.

[11] A. Maleknejad and M. M. Sheikh-Jabbari. Revisiting Cosmic No-Hair Theorem for Inflationary Settings. Phys. Rev. D, 85:123508, 2012. doi: 10.1103/PhysRevD.85. 123508.

[12] A. E. G¨umr¨uk¸c¨uo˘glu, Burak Himmetoglu, and Marco Peloso. Scalar-Scalar, ScalarTensor, and Tensor-Tensor Correlators from Anisotropic Inflation. Phys. Rev. D, 81:063528, 2010. doi: 10.1103/PhysRevD.81.063528.

[13] Timothy R. Dulaney and Moira I. Gresham. Primordial Power Spectra from Anisotropic Inflation. Phys. Rev. D, 81:103532, 2010. doi: 10.1103/PhysRevD. 81.103532.

[14] Masaaki Watanabe, Sugumi Kanno, and Jiro Soda. The Nature of Primordial Fluctuations from Anisotropic Inflation. Prog. Theor. Phys., 123:1041–1068, 2010. doi: 10.1143/PTP.123.1041.

[15] Masaaki Watanabe, Sugumi Kanno, and Jiro Soda. Imprints of Anisotropic Inflation on the Cosmic Microwave Background. Mon. Not. Roy. Astron. Soc., 412:L83–L87, 2011. doi: 10.1111/j.1745-3933.2011.01010.x.

[16] Sigbjorn Hervik, David F. Mota, and Mikjel Thorsrud. Inflation with stable anisotropic hair: Is it cosmologically viable? JHEP, 11:146, 2011. doi: 10.1007/JHEP11(2011)146.

[17] Mikjel Thorsrud, David F. Mota, and Sigbjorn Hervik. Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field. JHEP, 10:066, 2012. doi: 10.1007/JHEP10(2012)066.

[18] Nicola Bartolo, Sabino Matarrese, Marco Peloso, and Angelo Ricciardone. Anisotropic power spectrum and bispectrum in the f()F2 mechanism. Phys. Rev. D, 87(2):023504, 2013. doi: 10.1103/PhysRevD.87.023504.

[19] N. Bartolo, E. Dimastrogiovanni, M. Liguori, S. Matarrese, and A. Riotto. An Estimator for statistical anisotropy from the CMB bispectrum. JCAP, 01:029, 2012. doi: 10.1088/1475-7516/2012/01/029.

[20] Ali Akbar Abolhasani, Razieh Emami, Javad T. Firouzjaee, and Hassan Firouzjahi. N formalism in anisotropic inflation and large anisotropic bispectrum and trispectrum. JCAP, 08:016, 2013. doi: 10.1088/1475-7516/2013/08/016.

[21] Junko Ohashi, Jiro Soda, and Shinji Tsujikawa. Observational signatures of anisotropic inflationary models. JCAP, 12:009, 2013. doi: 10.1088/1475-7516/ 2013/12/009.

[22] Maresuke Shiraishi, Eiichiro Komatsu, and Marco Peloso. Signatures of anisotropic sources in the trispectrum of the cosmic microwave background. JCAP, 04:027, 2014. doi: 10.1088/1475-7516/2014/04/027.

[23] Xingang Chen, Razieh Emami, Hassan Firouzjahi, and Yi Wang. The TT, TB, EB and BB correlations in anisotropic inflation. JCAP, 08:027, 2014. doi: 10.1088/ 1475-7516/2014/08/027.

[24] Atsushi Naruko, Eiichiro Komatsu, and Masahide Yamaguchi. Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation. JCAP, 04:045, 2015. doi: 10.1088/1475-7516/2015/04/045.

[25] Razieh Emami and Hassan Firouzjahi. Clustering Fossil from Primordial Gravitational Waves in Anisotropic Inflation. JCAP, 10:043, 2015. doi: 10.1088/1475-7516/ 2015/10/043.

[26] Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020. doi: 10.1051/0004-6361/201833887.

[27] S. Ramazanov, G. Rubtsov, M. Thorsrud, and F. R. Urban. General quadrupolar statistical anisotropy: Planck limits. JCAP, 03:039, 2017. doi: 10.1088/1475-7516/ 2017/03/039.

[28] Naonori S. Sugiyama, Maresuke Shiraishi, and Teppei Okumura. Limits on statistical anisotropy from BOSS DR12 galaxies using bipolar spherical harmonics. Mon. Not. Roy. Astron. Soc., 473(2):2737–2752, 2018. doi: 10.1093/mnras/stx2333.

[29] Tomohiro Fujita and Ippei Obata. Does anisotropic inflation produce a small statistical anisotropy? JCAP, 01:049, 2018. doi: 10.1088/1475-7516/2018/01/049.

[30] Alireza Talebian, Amin Nassiri-Rad, and Hassan Firouzjahi. Stochastic E↵ects in Anisotropic Inflation. Phys. Rev. D, 101(2):023524, 2020. doi: 10.1103/PhysRevD. 101.023524.

[31] Maresuke Shiraishi, Julian B. Mu˜noz, Marc Kamionkowski, and Alvise Raccanelli. Violation of statistical isotropy and homogeneity in the 21-cm power spectrum. Phys. Rev. D, 93(10):103506, 2016. doi: 10.1103/PhysRevD.93.103506.

[32] A. Weltman et al. Fundamental physics with the Square Kilometre Array. Publ. Astron. Soc. Austral., 37:e002, 2020. doi: 10.1017/pasa.2019.42.

[33] Sugumi Kanno, Jiro Soda, and Masaaki Watanabe. Cosmological Magnetic Fields from Inflation and Backreaction. JCAP, 12:009, 2009. doi: 10.1088/1475-7516/ 2009/12/009.

[34] Sugumi Kanno, Jiro Soda, and Masaaki Watanabe. Anisotropic Power-law Inflation. JCAP, 12:024, 2010. doi: 10.1088/1475-7516/2010/12/024.

[35] Razieh Emami, Hassan Firouzjahi, S. M. Sadegh Movahed, and Moslem Zarei. Anisotropic Inflation from Charged Scalar Fields. JCAP, 02:005, 2011. doi: 10. 1088/1475-7516/2011/02/005.

[36] Kei Yamamoto, Masaaki Watanabe, and Jiro Soda. Inflation with Multi-VectorHair: The Fate of Anisotropy. Class. Quant. Grav., 29:145008, 2012. doi: 10.1088/ 0264-9381/29/14/145008.

[37] Kei Yamamoto. Primordial Fluctuations from Inflation with a Triad of Background Gauge Fields. Phys. Rev. D, 85:123504, 2012. doi: 10.1103/PhysRevD.85.123504.

[38] Keiju Murata and Jiro Soda. Anisotropic Inflation with Non-Abelian Gauge Kinetic Function. JCAP, 06:037, 2011. doi: 10.1088/1475-7516/2011/06/037.

[39] Keiichi Maeda and Kei Yamamoto. Inflationary Dynamics with a Non-Abelian Gauge Field. Phys. Rev. D, 87(2):023528, 2013. doi: 10.1103/PhysRevD.87.023528.

[40] Keiichi Maeda and Kei Yamamoto. Stability analysis of inflation with an SU(2) gauge field. JCAP, 12:018, 2013. doi: 10.1088/1475-7516/2013/12/018.

[41] Tuan Q. Do, W. F. Kao, and Ing-Chen Lin. Anisotropic power-law inflation for a two scalar fields model. Phys. Rev. D, 83:123002, 2011. doi: 10.1103/PhysRevD. 83.123002.

[42] Tuan Q. Do and W. F. Kao. Anisotropic power-law inflation for the Dirac-BornInfeld theory. Phys. Rev. D, 84:123009, 2011. doi: 10.1103/PhysRevD.84.123009.

[43] Junko Ohashi, Jiro Soda, and Shinji Tsujikawa. Anisotropic power-law k-inflation. Phys. Rev. D, 88:103517, 2013. doi: 10.1103/PhysRevD.88.103517.

[44] Junko Ohashi, Jiro Soda, and Shinji Tsujikawa. Anisotropic Non-Gaussianity from a Two-Form Field. Phys. Rev. D, 87(8):083520, 2013. doi: 10.1103/PhysRevD.87. 083520.

[45] Nicola Bartolo, Sabino Matarrese, Marco Peloso, and Angelo Ricciardone. Anisotropy in solid inflation. JCAP, 08:022, 2013. doi: 10.1088/1475-7516/2013/ 08/022.

[46] Razieh Emami and Hassan Firouzjahi. Curvature Perturbations in Anisotropic Inflation with Symmetry Breaking. JCAP, 10:041, 2013. doi: 10.1088/1475-7516/ 2013/10/041.

[47] Tuan Q. Do and W. F. Kao. Anisotropically expanding universe in massive gravity. Phys. Rev. D, 88(6):063006, 2013. doi: 10.1103/PhysRevD.88.063006.

[48] Bin Chen and Zhuang-wei Jin. Anisotropy in Inflation with Non-minimal Coupling. JCAP, 09:046, 2014. doi: 10.1088/1475-7516/2014/09/046.

[49] Nicola Bartolo, Sabino Matarrese, Marco Peloso, and Maresuke Shiraishi. Parityviolating and anisotropic correlations in pseudoscalar inflation. JCAP, 01:027, 2015. doi: 10.1088/1475-7516/2015/01/027.

[50] Asuka Ito and Jiro Soda. Designing Anisotropic Inflation with Form Fields. Phys. Rev. D, 92(12):123533, 2015. doi: 10.1103/PhysRevD.92.123533.

[51] Asuka Ito and Jiro Soda. MHz Gravitational Waves from Short-term Anisotropic Inflation. JCAP, 04:035, 2016. doi: 10.1088/1475-7516/2016/04/035.

[52] Asuka Ito and Jiro Soda. Anisotropic Constant-roll Inflation. Eur. Phys. J. C, 78 (1):55, 2018. doi: 10.1140/epjc/s10052-018-5534-5.

[53] Tuan Q. Do and W. F. Kao. Bianchi type I anisotropic power-law solutions for the Galileon models. Phys. Rev. D, 96(2):023529, 2017. doi: 10.1103/PhysRevD.96. 023529.

[54] Tuan Q. Do and W. F. Kao. Anisotropic power-law inflation for a conformalviolating Maxwell model. Eur. Phys. J. C, 78(5):360, 2018. doi: 10.1140/epjc/ s10052-018-5846-5.

[55] Tuan Q. Do and W. F. Kao. Anisotropic power-law inflation of the five dimensional scalar–vector and scalar-Kalb–Ramond model. Eur. Phys. J. C, 78(6):531, 2018. doi: 10.1140/epjc/s10052-018-6008-5.

[56] Gabriele Franciolini, Alex Kehagias, Antonio Riotto, and Maresuke Shiraishi. Detecting higher spin fields through statistical anisotropy in the CMB bispectrum. Phys. Rev. D, 98(4):043533, 2018. doi: 10.1103/PhysRevD.98.043533.

[57] Jinn-Ouk Gong, Toshifumi Noumi, Gary Shiu, Jiro Soda, Kazufumi Takahashi, and Masahide Yamaguchi. E↵ective Field Theory of Anisotropic Inflation and Beyond. JCAP, 08:027, 2020. doi: 10.1088/1475-7516/2020/08/027.

[58] Tuan Q. Do and W. F. Kao. Anisotropic power-law inflation for a model of two scalar and two vector fields. Eur. Phys. J. C, 81(6):525, 2021. doi: 10.1140/epjc/ s10052-021-09334-y.

[59] Howard Georgi. Lie algebras in particle physics, volume 54. Perseus Books, Reading, MA, 2nd ed. edition, 1999.

[60] Pengyuan Gao, Kazufumi Takahashi, Asuka Ito, and Jiro Soda. Cosmic no-hair conjecture and inflation with an SU(3) gauge field. Phys. Rev. D, 104(10):103526, 2021. doi: 10.1103/PhysRevD.104.103526.

[61] Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020. doi: 10.1051/0004-6361/201833887.

[62] C. L. Bennett, R. S. Hill, G. Hinshaw, D. Larson, K. M. Smith, J. Dunkley, B. Gold, M. Halpern, N. Jarosik, A. Kogut, and et al. Seven-year wilkinson microwave anisotropy probe ( wmap ) observations: Are there cosmic microwave background anomalies? The Astrophysical Journal Supplement Series, 192(2):17, Jan 2011. ISSN 1538-4365. doi: 10.1088/0067-0049/192/2/17. URL http://dx.doi.org/ 10.1088/0067-0049/192/2/17.

[63] A. Maleknejad, M. M. Sheikh-Jabbari, and Jiro Soda. Gauge-flation and Cosmic No-Hair Conjecture. JCAP, 01:016, 2012. doi: 10.1088/1475-7516/2012/01/016.

[64] Chong-Bin Chen and Jiro Soda. Anisotropic Hyperbolic Inflation. 6 2021.

[65] B. K. Darian and H. P. K¨unzle. Axially symmetric Bianchi I Yang-Mills cosmology as a dynamical system. Class. Quant. Grav., 13:2651–2662, 1996. doi: 10.1088/ 0264-9381/13/10/005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る