リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Motion-Less VRの提案と基礎評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Motion-Less VRの提案と基礎評価

望月 典樹 法政大学 DOI:info:doi/10.15002/00025870

2022.12.12

概要

VR(Virtual Reality)は「見かけは現実ではないが,実質的には,現実であること」であり,近年VR技術は様々な場面での応用が期待されている.本論文では,VRの理想形として「様々なバーチャル環境において,様々な体格のバーチャル身体を用いて,リアル環境と同様の運動が実行できる」という要件を設定し,この実現に向けた検討を行った.

はじめに,「様々な体格のバーチャル身体を用いて,リアル環境と同様の運動が実行できる」という点に着目し,現行のVRシステムの方式において,身体定位に関与する脳内モデルである身体図式をリアル身体から自身と形状の異なるバーチャル身体のものへと更新可能であるかを確認した.具体的には,身体図式の更新に関して,その有効性の確認,基礎特性の導出とその評価,運動時における評価,触力覚提示による影響の評価を行った.結果として,リアル身体での運動の結果をバーチャル身体の運動に反映する現行のVRシステムの方式では,任意の身体図式へ完全に更新することはできず,さらに更新後の身体形状によっては特定の運動が実行できなくなるという問題も生じることから,「様々な体格のバーチャル身体を用いて,リアル環境と同様の運動が実行できる」という要件を満たすことは困難であるという結論に至った.

他方,「様々なバーチャル環境において,リアル環境と同様の運動が実行できる」という要件に関しては,歩行に伴う移動を打ち消すロコモーションインタフェースに外骨格型の力覚提示装置を組み合わせることで,現行のVRシステムの方式においてもある程度までは実現可能である.しかしながら,バーチャル環境とのインタラクション時の反力を受けつつ,身体の位置移動が生じないようにするためには,反力を身体の別部位で受ける必要がある.その場合,身体の一部は装置に固定されることとなるため,ユーザの実行できる運動が制限されるといった問題が生じる.

これらを受けて,本論文ではVRの理想形を実現し得るVRシステムの方式を提案し,検討を行った.提案方式はリアル身体での運動を必要としないことから「Motion-LessVR」と命名した.提案方式はリアル身体の運動の抑制,ユーザからの運動意図の取得,バーチャル身体の運動の生成,ユーザへの運動感覚の提示の機能から構成される.モーションキャプチャを用いた現行のVRシステムでは,運動出力と感覚入力の際にリアル環境での身体運動を必要とするため,前述の通りリアル環境による空間的・物理的な制約を受けることとなる.一方,提案システムはリアル環境を介さずにユーザとシステムの間で情報の入出力が可能であるため,VRの理想形を実現し得ると考えられる.これらを踏まえた本論文の構成は以下の通りである.

第1章では,初めにVRの定義を行い,VRの成立に必要な要素を挙げた上で,VRを実現するシステムの構成について述べた.続いて,これまでのVRシステムの変遷を説明した後,応用例を以ってVRの社会的なニーズを提示した.次に,SF作品で登場するVRシステムを取り上げ,VRの理想形には「様々なバーチャル環境において,様々な体格のバーチャル身体を用いて,リアル環境と同様の運動が実行できる」という要件を満たす必要があることを示した.最後に,この要件の実現を目指すことを研究目的として述べた.

第2章では,「様々な体格のバーチャル身体を用いて,リアル環境と同様の運動が実行できる」という要件について実現可能性の検討を行った.具体的には,様々な体格のバーチャル身体での運動を実現するためには,身体定位に関与する脳内モデルである身体図式を変更する必要があるということから,現行のVRシステムの方式において身体図式を更新する手法に着目し,要件を真に満たしうるかを各種実験により精査した.結果として,身体図式の更新には限界があり,現行のVRシステムの方式では「様々な体格のバーチャル身体を用いて,リアル環境と同様の運動が実行できる」という要件を満たすことが困難であるという結論に至った.

第3章では,まず「様々なバーチャル環境において,リアル環境と同様の運動が実行できる」という要件に関して,既存技術での限界を述べた.その上で,第2章の結論と併せて,現行のVRシステムの方式ではVRの理想形を満たすことが困難であることを説明した.これを受けて,VRの理想形を究極的には実現し得るシステムの方式を提案した.具体的に,提案方式はリアル身体の運動の抑制,ユーザからの運動意図の取得,バーチャル身体の運動の生成,ユーザへの運動感覚の提示の機能から構成されることを説明し,その基礎的なシステム構成についても述べた.なお,基礎的なシステムの構成は,リアル身体を機械的に固定した状態で,ユーザが運動を行おうとして生じた関節トルクを運動意図として取得し,力学計算によってバーチャル身体の運動の生成を行い,その結果を視覚や深部感覚に提示するというものである.

第4章では,示指三関節の屈伸運動,(深部感覚提示を含む)手首関節での二軸性運動,上肢での水平2自由度運動に関して,第3章で述べた基礎的なシステムの実装と評価を行い,各身体部位における提案方式の実現可能性の確認をそれぞれ行った.

第5章では,結論として,本研究のまとめを述べ,さらに提案方式の今後の課題と展望を,リアル身体の運動の抑制,ユーザからの運動意図の取得,バーチャル身体の運動の生成,ユーザへの運動感覚の提示といった機能別に示した.

参考文献

[1] 舘暲, 佐藤誠, 廣瀬通孝, 日本バーチャルリアリティ学会編, “バーチャルリアリティ 学,” コロナ社, 2011.

[2] S. G. Weinbaum, “Pygmalion’s Spectacles,” Wonder Stories, p. 28, 1935.

[3] M. L. Heilig, “Sensorama Simulator,” US3050870A, 1962-08-28.

[4] M. L. Heilig, “Stereoscopic-Television Apparatus for Individual Use,” US2955156A, 1960-10-4.

[5] I. E. Sutherland, “A Head-Mounted Three Dimensional Display,” Proceedings of the AFIPS Fall Joint Computer Conference, Washington, D.C., Vol. 33, pp. 757–764, 1968.

[6] N. Negroponte, “Media Room,” Proceedings of Society for Information Display Vol. 22, No. 2, pp. 109–113, 1981.

[7] S. S. Fisher, “Virtual Environment Display System,” ACM 1986 Workshop on Interactive 3D Graphics, Chapel Hill, North Carolina, pp. 1–11, 1986.

[8] Ultraleap 社, “Leap Motion Controller,” https://www.ultraleap.com/product/ leap-motion-controller/ (参照 2022-03-29).

[9] Virtuix 社, “Omni One,” https://omni.virtuix.com/ (参照 2022-03-29).

[10] ジョンソン・エンド・ジョンソン社, “ジョンソン・エンド・ジョンソンとジョリーグッ ド 医療研修向けバーチャル・リアリティサービスを共同開発,” https://www.jnj. co.jp/jjmkk/press/20181105/ (参照 2022-03-29).

[11] mediVR 社, “mediVR カグラ,”https://www.medivr.jp/product/ (参照 2022-03- 29).

[12] Intel 社, “インテル、驚嘆の PC ゲーム体験と VR 体験を E3 で披露,” https: //newsroom.intel.co.jp/news-releases/intel-showcases-extraordinarypc-gaming-vr-experiences-e3-announces-1-million-intel-grand-slamesports/ (参照 2022-03-29).

[13] cluster 社, “cluster,” https://cluster.mu/ (参照 2022-03-29).

[14] VARK 社, “VARK,” https://corp.vark.co.jp/ (参照 2022-03-29).

[15] Meta Platforms 社, “Horizon Workrooms,” https://www.oculus.com/workrooms/ (参照 2022-03-29).

[16] VRChat 社, “VRChat,” https://hello.vrchat.com/ (参照 2022-03-29).

[17] サイバネットシステム社, “AR/VR ソリューション,” https://www.cybernet.co. jp/ar-vr/ (参照 2022-03-29).

[18] ラティス・テクノロジー社, “XVL Studio VR オプション,” https://www.lattice. co.jp/products/lineup/xvl-studio/xvl-vr/ (参照 2022-03-29).

[19] PwC グループ社, “グローバル エンタテイメント & メディア アウトルック 2021-2025,” https://www.pwc.com/jp/ja/knowledge/thoughtleadership/2021/ assets/pdf/outlook.pdf (参照 2022-07-15).

[20] Warner Bros. Entertainment Inc., “The Matrix,” https://www.warnerbros.com/ movies/matrix (参照 2022-08-05).

[21] 川原礫, “ソードアート・オンライン,” https://www.swordart-online.net/ (参照 2022-08-05).

[22] Warner Bros. Entertainment Inc., “READY PLAYER ONE,” https://www. warnerbros.com/movies/ready-player-one (参照 2022-08-05).

[23] M. Botvinick and J. Cohen, “Rubber Hands ‘feel’ Touch That Wyes See,” Nature, Vol. 391, p. 756, 1998.

[24] M. Tsakiris, L. Carpenter, D. James, and A. Fotopoulou, “Hands Only Illusion: Multisensory Integration Elicits Sense of Ownership for Body Parts but Not for Noncorporeal Objects,” Experimental Brain Research, Vol. 204, No. 3, pp. 343–352, 2010.

[25] K. C. Armel and V. S. Ramachandran, “Projecting Sensations to External Objects: Evidence From Skin Conductance Response,” Proceedings of the Royal Society of London. Series B: Biological Sciences, Vol. 270, pp. 1499–1506, 2003.

[26] H. Ehrsson, C. Henrik, R. Spence, and E. Passingham, “That’s My Hand! Activity in Premotor Cortex Reflects Feeling of Ownership of a Limb,” Science, Vol. 305, No. 5685, pp. 875–877, 2004.

[27] S. Shimada, K. Fukuda, and K. Hiraki, “Rubber Hand Illusion Under Delayed Visual Feedback,” PLoS ONE, Vol. 4, No. 7, e6185, pp. 1–5, 2009.

[28] M. Slater, D. Perez-Marcos, H. H. Ehrsson, and M. V. Sanchez-Vives, “Towards a Digital Body: The Virtual Arm Illusion,” Front Hum Neurosci, Vol. 2, No. 6, 2008.

[29] M. V. Sanchez-Vives, B. Spanlang, A. Frisoli, M. Bergamasco, M. Slater, “Virtual Hand Illusion Induced by Visuomotor Correlations,” PLoS One, Vol. 5, No. 4, e10381, 2010.

[30] Y. Yuan and A. Steed, “Is the Rubber Hand Illusion Induced by Immersive Virtual Reality?,” IEEE Virtual Reality Conference, pp. 95–102, 2010.

[31] 平家雅之, 川崎裕達, 田中貴紘, 藤田欣也, “類似度と好感度を両立する個人化アバタ のデフォルメ法の検討,” ヒューマンインタフェース学会論文誌, Vol. 13, No. 3, pp. 243–254, 2011.

[32] 尾上聡, 山本健太, 中西英之, “身体動作再現アバタによる存在感共有,” 情報処理学会 インタラクション, 4CR3-17, 2011.

[33] 浜野雄一朗, 西内信之, 朴美卿, “プライバシーと情報公開を考慮したアバター作成に 関する研究,” 日本人間工学会大会講演集, 日本人間工学会第 53 回大会, 1D1-2, pp. 168–169, 2012.

[34] N. Yee and J. Bailenson, “The Proteus Effect: The Effect of Transformed SelfRepresentation on Behavior,” Human Communication Research, Vol 33, No. 3, pp. 271—290, 2007.

[35] M. Kocur, M. Kloss, V. Schwind, C. Wolff, and N. Henze, “Flexing Muscles in Virtual Reality: Effects of Avatars’ Muscular Appearance on Physical Performance,” Proceedings of the Annual Symposium on Computer-Human Interaction, pp. 193— 205, 2020.

[36] 小柳陽光, 鳴海拓志, J. L. Lugrin, 安藤英由樹, 大村廉, “ドラゴンアバタを用いたプロ テウス効果の生起による高所に対する恐怖の抑制,” 日本バーチャルリアリティ学会 論文誌, Vol. 25, No. 1, pp. 2–11, 2020.

[37] 渡邊孝一, 川上直樹, 舘暲, “テレイグジスタンス・マスタスレーブシステムにおける 操縦者とスレーブロボットとの間の寸法不一致の影響,” 日本バーチャルリアリティ 学会論文誌, Vol. 14, No. 3, pp. 391–394, 2009.

[38] 竹林秀晃, 弘井鈴乃, 滝本幸治, 宮本謙三, 宅間豊, 井上佳和, 宮本祥子, 岡部孝生, “自 己身体における視覚情報と身体感覚情報との不一致が姿勢制御に及ぼす影響,” 日本 理学療法学術大会, Vol. 40, No. 2, A-P-23, p. 48100757, 2013.

[39] H. Head and G. Holmes, “Sensory Disturbances From Cerebral Lesions,” Brain, Vol. 34, pp. 102–245, 1911.

[40] A. Maravita and A. Iriki, “Tools for the Body (Schema),” Trends in Cognitive Sciences, Vol. 8, No. 2, pp. 79—86, 2004.

[41] V. Y. Roschin, A. A. Frolov, Y. Burnod and M. A. Maier, “A Neural Network Model for the Acquisition of a Spatial Body Scheme Through Sensorimotor Interaction,” Neural Computation, Vol. 23, No. 7, pp. 1821–1834, 2011.

[42] V. Y. Roschin, A. A. Frolov, Y. Burnod and M. A. Maier, “A Neural Network Model for the Acquisition of a Spatial Body Scheme Through Sensorimotor Interaction,” Neural Computation, Vol. 23, No. 7, pp. 1821–1834, 2011.

[43] E. Bushnell and J. Boudreau, “Motor Development and the Mind: The Potential Role of Motor Abilities as a Determinant of Aspects of Perceptual Development,” Child Develop, Vol. 64, No. 4, pp. 1005–1021, 1993.

[44] R. P. Bromage and R. Melzack, “Phantom Limbs and the Body Schema,” Canadian Anaesthetists Society Journal, Vol. 21, No. 3, pp. 267–274, 1974.

[45] L. Cardinali, C. Brozzoli, C. Urquizar, R. Salemme, A. C. Roy, and A. Farne, “When Action Is Not Enough Tool-Use Reveals Tactile-Dependent Access to Body Schema,” Neuropsychologia, Vol. 49, No. 13, pp. 3750–3757, 2011.

[46] A. Tajadura-Jimenez, A. Valjamae, I. Toshima, T. Kimura, M. Tsakiris, and N. Kitagawa, “Action Sounds Recalibrate Perceived Tactile Distance,” Current Biology, Vol. 22, pp. 516–517, 2012.

[47] 工藤孝幾, “運動感覚に対する視覚の優位性とその定量化,” 体育学研究, Vol. 25, No. 1, pp. 13–20, 1980.

[48] E. Oyama, T. Maeda, S. Tachi, K. F. MacDorman, and A. Agah, “On the Use of Forward Kinematics Models in Visually Guided Hand Position Control - Analysis Based on Isles Model,” Neurocomputing, Vol. 44, pp. 965–972, 2002.

[49] C. Prablanc, J. F. Echallier, E. Komilis, and M. Jeannerod, “Optimal Response of Eye and Hand Motor Systems in Pointing at a Visual Target,” Biological Cybernetics, Vol. 35, No. 2, pp. 113–124, 1979.

[50] 川人光男, “脳の運動学習,” 日本ロボット学会誌, Vol. 13, No. 1, pp. 11–19, 1995.

[51] 小堀聡, “人間の知覚と運動相互作用,” 龍谷理工ジャーナル, Vol. 23, No. 1, pp. 24–31, 2011.

[52] M. I. Jordan and D. E. Rumelhart, “Forward Models: Supervised Learning With a Distal Teacher,” Cognitive Science: A Multidisciplinary Journal, Vol. 16, No. 3, pp. 307–354, 1992.

[53] D. M. Wolpert and M. Kawato, “Multiple Paired Forward and Inverse Models for Motor Control,” Neural Networks, Vol. 11, pp. 1317–1329, 1998.

[54] D. M. Wolpert, R. C. Miall, and M. Kawato, “Internal Models in the Cerebellum,” Trends in Cognitive Sciences, Vol. 2, pp. 338–347, 1998.

[55] M. Kawato, K. Furukawa, and R. Suzuki, “A Hierarchical Neural Network Model for Control and Learning of Voluntary Movement,” Biological Cybernetics, Vol. 57, pp. 169–185, 1987.

[56] M. Kawato and H. Gomi, “A Computational Model of Four Regions of the Cerebellum Based on Feedback-Error-Learning,” Biological Cybernetics, Vol. 68, pp. 95–103, 1992.

[57] A. Charpentier, “Experimental Study of Some Aspects of Weight Perception,” Archives de Physiologie Normales et Pathologiques, Vol. 3, pp. 122–135, 1891.

[58] M. T. Turvey, “Dynamic Touch,” American Psycologist, Vol. 51, No. 11, pp. 1134– 1152, 1996.

[59] H. Y. Solomon and M. T. Turvey, “Haptically Perceiving the Distances Reachable With Hand-Held Objects,” Journal of Experimental Psychology Human Perception and Performance, Vol. 14, No. 3, pp. 404–427, 1988.

[60] C. Swindells, A. Unden, and T. Sang, “TorqueBAR: An Ungrounded Haptic Feedback Device,” Proceedings of the 5th International Conference on Multimodal Interfaces, pp. 52-–59, 2003.

[61] P. Haggard and V. Chambon, “Sense of Agency,” Current Biology, Vol. 22, No. 10, pp. R390–R392, 2012.

[62] M. Gonzalez-Franco, D. Perez-Marcos, B. Spanlang, and M. Slater, “The Contribution of Real-Time Mirror Reflections of Motor Actions on Virtual Body Ownership in an Immersive Virtual Environment,” IEEE Virtual Reality Conference, pp. 111–114, 2010.

[63] 後藤淳, “中枢神経系の機能解剖,” 関西理学療法, Vol. 5, pp. 11–21, 2005.

[64] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE,” Proceedings of The 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135– 142, 1993.

[65] 林隆伯, 中泉文孝, 矢野博明, 岩田洋夫, “複数プロジェクタを用いた立体視可能な全周 球面没入型ディスプレイの開発,” 日本バーチャルリアリティ学会論文誌, Vol. 10, No. 2, pp. 163–171, 2005.

[66] J. Y. Hong, B. Lam, Z. T. Ong, K. Ooi, W. S. Gan, J. Kang, J. Feng, and S. T. Tan, “Quality Assessment of Acoustic Environment Reproduction Methods for Cinematic Virtual Reality in Soundscape Applications,” Building and Environment, Vol. 149, pp. 1–14, 2019.

[67] M. A. Nahon and L. D. Reid, “Simulator Motion-Drive Algorithms-a Designer’s Perspective,” Journal of Guidance, Control, and Dynamics, Vol. 13, No. 2, pp. 356–362, 1990.

[68] K. Aoyama, H. Iizuka, H. Ando, and T. Maeda, “Four-Pole Galvanic Vestibular Stimulation Causes Body Sway About Three Axes,” Scientific Reports, Vol. 5, No. 1, pp. 1–8, 2015.

[69] 岩田洋夫, “体性感覚呈示技術,” IEEE Transactions on Haptics, Vol. 10, No. 1, pp. 130–134, 2017.

[70] V. Yem and H. Kajimoto, “Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation,” IEEE Transactions on Haptics, Vol. 10, No. 1, pp. 130- 134, 2017.

[71] T. Iwamoto, M. Tatezono, and H. Shinoda, “Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound,” EuroHaptics, pp. 504–513, 2008.

[72] C. Carignan, J. Tang, and S. Roderick, “Development of an Exoskeleton Haptic Interface for Virtual Task Training,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 3697–3702, 2009.

[73] H. Iwata, “Pen-Based Haptic Virtual Environment,” Proceedings of IEEE Virtual Reality Annual International Symposium, pp. 287–292, 1993.

[74] H. Iwata, H. Yano, F. Nakaizumi, and R. Kawamura, “Project FEELEX: Adding Haptic Surface to Graphics,” Proceedings of ACM SIGGRAPH 2001, pp. 469–476, 2001.

[75] 平田亮吉, 星野洋, 前田太郎, 舘暲, “人工現実感システムにおける物体形状を提示す る力触覚ディスプレイ,” 日本バーチャルリアリティ学会論文集, Vol. 1, No. 1, pp. 23–32, 1996.

[76] 岩田洋夫, 中川博憲, “着用型力覚帰還ジョイスティック,” Human Interface N&R, Vol. 13, pp. 135–138, 1998.

[77] 筧直之, 矢野博明, 齊藤允, 小木哲朗, 廣瀬通孝, “没入型仮想空間における力覚呈示デ バイス HapticGEAR の開発とその評価,” 日本バーチャルリアリティ学会論文誌, Vol. 5, No. 4, pp. 1113–1120, 2000.

[78] M. Sakai, Y. Fukui, and N. Nakamura, “Effective Output Patterns for Torque Display ‘GyroCube’,” ICAT 2003, pp. 1–6, 2003.

[79] T. Amemiya, H. Ando, and T. Maeda, “Virtual Force Display: Direction Guidance Using Asymmetric Acceleration via Periodic Translational Motion,” World Haptics Conference 2005, pp. 619–622, 2005.

[80] H. Iwata and T. Fujii, “Virtual Perambulator: A Novel Interface Device for Locomotion in Virtual Environment,” Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium, pp. 60–65, 1996.

[81] 岩田洋夫, “全方向無限平面を用いたロコモーションインタフェース,” 日本バーチャ ルリアリティ学会論文誌, Vol. 5, No. 2, pp. 853–862, 2000.

[82] 岩田洋夫, 中泉文孝, “凹凸面を呈示するロコモーションインタフェース GaitMaster,” 日本バーチャルリアリティ学会論文誌, Vol. 5, No. 2, pp. 863–866, 2000.

[83] J. A. Rubin and R. S. Crockett, “Whole-Body Human-Computer Interface,” US20160139666A1, 2016-05-19.

[84] G. M. Goodwin, D. I. McCloskey, and P. B. C. Matthews, “Proprioceptive Illusions Induced by Muscle Vibration: Contribution by Muscle Spindles to Perception?,” Science, Vol. 175, No. 4028, pp. 1382-–1384, 1972.

[85] H. Kajimoto: “Illusion of Motion Induced by Tendon Electrical Stimulation,” World Haptics Conference 2013, pp. 555–558, 2013.

[86] 青木慶, 山崎信寿, “直立 2 足歩行における関節受動抵抗の意義,” バイオメカニズム, Vol. 14, pp. 59–68, 1998.

[87] A. Esteki and J. M. Mansour, “An Experimentally Based Nonlinear Viscoelastic Model of Joint Passive Moment,” Journal of Biomechanics, Vol. 29, No. 4, pp. 443– 450, 1996.

[88] M. Kim, C. Jeon, and J. Kim, “A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality,” Sensors, Vol. 17, No. 5, p. 1141, 2017.

[89] M. Chessa, G. Maiello, L. Klein, V. Paulun, and F. Solari, “Grasping Objects in Immersive Virtual Reality,” IEEE Virtual Reality Conference, pp. 1749–1754, 2019.

[90] P. P. Valentini and E. Pezzuti, “Accuracy in Fingertip Tracking Using Leap Motion Controller for Interactive Virtual Applications,” International Journal on Interactive Design and Manufacturing, Vol. 11, No. 3, pp. 641-–650, 2017.

[91] A. Vysocky, S. Grushko, P. Oˇsˇc´adal, T. Kot, J. Babjak, R. J´anoˇs, M. Sukop, and Z. Bobovsk´y, “Analysis of Precision and Stability of Hand Tracking With Leap Motion Sensor,” Sensors, Vol. 20, No. 15, p. 4088, 2020.

[92] S. Leitkam and T. Bush, “Modeling Finger Capabilities for Use in Assessment and Monitoring of Hand Rehabilitation,” Proceedings of the ASME 2013 Summer Bioengineering Conference, 2013.

[93] D. T. Davy and M. L. Audu, “A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait,” Journal of Biomechanics, Vol. 20, No. 2, pp. 187–201, 1987.

[94] 荻原 直道, 山崎 信寿, “身体の構造制約に基づく自然な上肢リーチング動作の生成,” 日本機械学会論文集 C 編, Vol. 67, No. 659, pp. 2314–2320, 2001.

[95] 山崎 信寿, 田中 隆之, “関節の抵抗特性を模擬したダミー骨格,” バイオメカニズム, Vol. 18, pp. 175–185, 2006.

[96] E. Tidoni, G. Fusco, and D. Leonardis, A. Frisoli, M. Bergamasco and S M. Aglioti, “Illusory Movements Induced by Tendon Vibration in Right- And Left-Handed People,” Experimental Brain Research, Vol. 233, No. 2, pp. 375-–383, 2015.

[97] D. Hagimori, S. Yoshimoto, N. Sakata, and K. Kiyokawa, “Tendon Vibration Increases Vision-Induced Kinesthetic Illusions in a Virtual Environment,” 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 952–953, 2019.

[98] J. P. Roll, J. P. Vedel, and E. Ribot, “Alteration of Proprioceptive Messages Induced by Tendon Vibration in Man: A Microneurographic Study,” Experimental Brain Research, Vol. 76, No. 1, pp. 213-–222, Jun., 1989.

[99] C. Blanchard, R, Roll, J. P. Roll, and A. Kavounoudias, “Differential Contributions of Vision, Touch and Muscle Proprioception to the Coding of Hand Movements,” PLoS One, Vol. 8, No. 4, pp. 1–11, 2013.

[100] AIST, 人体寸法データベース 1991-92, https://www.airc.aist.go.jp/dhrt/91- 92/data/list.html (参照 2022-07-15).

[101] I. S. MacKenzie, “Fitts’ Law as a Research and Design Tool in Human-Computer Interaction,” Human-Computer Interaction, Vol. 7, No. 1, pp. 91–139, 1992.

[102] A.Murata and H.Iwase, “Extending Fitts’ Law to a Three-Dimensional Pointing Task,” Human Movement Science, Vol. 20, No. 6, pp. 791–805, 2001.

[103] S. Matsuyama and M. Karashima, “A Study on Characteristics of Hand Gesture Pointing Operation Versus Mouse Pointing Operation,” International Conference on Human-Computer Interaction, pp. 170–176, 2017.

[104] 内山孝憲, 別所知之, 吉田正樹, 赤澤堅造, “ヒト上肢の関節角度と等尺性トルクの関 係”, バイオメカニズム学会編,” バイオメカニズム, Vol. 13, pp. 77–88, 1996.

[105] Y. Kim, H. S. Cho, and H. Park, “Technical Development of Transcutaneous Electrical Nerve Inhibition Using Medium-Frequency Alternating Current,” Journal of NeuroEngineering and Rehabilitation, Vol. 15, No. 80, pp. 1–12, 2018.

[106] 梅沢侑実, 土井幸輝, 藤本浩志, “振動刺激による人差し指屈曲錯覚の生起と錯覚特 性,” 人間工学, Vol. 52, No. 2, pp. 88–95, 2016.

[107] D. F. Collins and A. Prochazka, “Movement Illusions Evoked by Ensemble Cutaneous Input From the Dorsum of the Human Hand,” Journal of Physiology, Vol. 496, No. 3, pp. 857–871, 1996.

[108] S. Leedham and J. Dowling, “Force-Length, Torque-Angle and EMG-Joint Angle Relationships of the Human in Vivo Biceps Brachii,” European Journal of Applied Physiology and Occupational Physiology, Vol. 70, No. 5, pp. 421—426, 1995.

[109] J. Vredenbregt and G. Rau, “Surface Electromyography in Relation to Force, Muscle Length, and Endurance,” New Developments in Electromyography and Clinical Neurophysiology, Vol. 1, pp. 607–622, 1973.

[110] R. G. Carvalho, C. F. Amorim, L. H. Per´acio, H. F. Coelho, A. C. Vieira, H. J. Karl Menzel, and L. A. Szmuchrowski, “Analysis of Various Conditions in Order to Measure Electromyography of Isometric Contractions in Water and on Air,” Journal of Electromyography and Kinesiology, Vol. 20, No. 5, pp. 988-–993, 2010.

[111] A. J. Lloyd, “Surface Electromyography During Sustained Isometric Contractions,” Journal of Applied Physiology, Vol. 30, No. 5, pp. 713–719, 1971.

[112] S. M. Radhakrishnan, S. N. Baker, and A. Jackson, “Learning a Novel MyoelectricControlled Interface Task,” Journal of Neurophysiology, Vol. 100, No. 4, pp. 2397– 2408, Aug. 2008.

[113] B. Cesqui, P. Tropea, S. Micera, and H. I. Krebs, “EMG-Based Pattern Recognition Approach in Post Stroke Robot-Aided Rehabilitation: A Feasibility Study,” Journal of NeuroEngineering and Rehabilitation, Vol. 10, No. 1, p. 75, 2013.

[114] G. Cheron, J. P. Draye, M. Bourgeios, and G. Libert, “A Dynamic Neural Network Identification of Electromyography and Arm Trajectory Relationship During Complex Movements,” IEEE Transactions on Biomedical Engineering, Vol. 43, No. 5, pp. 552— 558, 1996.

[115] Q. Ai, B. Ding, Q. Liu, and W. Meng, “A Subject-Specific EMG-Driven Musculoskeletal Model for Applications in Lower-Limb Rehabilitation Robotics,” International Journal of Humanoid Robotics, Vol. 13, No. 3, pp. 1—22, 2016.

[116] K. Masuda, T. Masuda, T. Sadoyama, M. Inaki, and S. Katsuta, “Changes in Surface EMG Parameters During Static and Dynamic Fatiguing Contractions,” Journal of Electromyography and Kinesiology, Vol. 9, No. 1, pp. 39-–46, 1999.

[117] M. A. Nussbaum, “Static and Dynamic Myoelectric Measures of Shoulder Muscle Fatigue During Intermittent Dynamic Exertions of Low to Moderate Intensity,” European Journal of Applied Physiology, Vol. 85, No. 3-4, pp 299-309, 2001.

[118] T. Oshima, T. Fujikawa, and M. Kumamoto, “Functional Evaluation of Effective Muscle Strength Based on a Muscle Coordinate System Consisted of Bi-articular and Mono-Articular Muscles - Contractile Forces and Output Forces of Human Limbs -,” Journal of the Japan Society for Precision Engineering, Vol. 65, No. 12, pp. 1772–1777, 1999 (in Japanese).

[119] T. Fujikawa, “Mechanical Properties of Bi-articular Muscles With Movement of the Extremities,” Japanese Journal of Physical Therapy Fundamentals, Vol.19, No.2, pp. 8–16, 2016 (in Japanese).

[120] J. P. Roll and J. P. Vedel, “Kinaesthetic Role of Muscle Afferents in Man, Studied by Tendon Vibration and Microneurography,” Experimental Brain Research, Vol. 47, No. 2, pp. 177–190, 1982.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る