リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase

Akiyama, Ryota Watanabe, Bunta Nakayasu, Masaru Lee, Hyoung Jae Kato, Junpei Umemoto, Naoyuki Muranaka, Toshiya Saito, Kazuki Sugimoto, Yukihiro Mizutani, Masaharu 京都大学 DOI:10.1038/s41467-021-21546-0

2021.02.26

概要

Potato (Solanum tuberosum), a worldwide major food crop, produces the toxic, bitter tasting solanidane glycoalkaloids α-solanine and α-chaconine. Controlling levels of glycoalkaloids is an important focus on potato breeding. Tomato (Solanum lycopersicum) contains a bitter spirosolane glycoalkaloid, α-tomatine. These glycoalkaloids are biosynthesized from cholesterol via a partly common pathway, although the mechanisms giving rise to the structural differences between solanidane and spirosolane remained elusive. Here we identify a 2-oxoglutarate dependent dioxygenase, designated as DPS (Dioxygenase for Potato Solanidane synthesis), that is a key enzyme for solanidane glycoalkaloid biosynthesis in potato. DPS catalyzes the ring-rearrangement from spirosolane to solanidane via C-16 hydroxylation. Evolutionary divergence of spirosolane-metabolizing dioxygenases contributes to the emergence of toxic solanidane glycoalkaloids in potato and the chemical diversity in Solanaceae.

この論文で使われている画像

参考文献

1. Chae, L., Kim, T., Nilo-Poyanco, R. & Rhee, S. Y. Genomic signatures of specialized metabolism in plants. Science 344, 510–513 (2014).

2. Friedman, M. Tomato glycoalkaloids: role in the plant and in the diet. J. Agric. Food Chem. 50, 5751–5780 (2002).

3. Milner, S. E. et al. Bioactivities of glycoalkaloids and their aglycones from solanum species. J. Agric. Food Chem. 59, 3454–3484 (2011).

4. Heftmann, E. Biogenesis of steroids in solanaceae. Phytochemistry 22, 1843–1860 (1983).

5. Sawai, S. et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26, 3763–3774 (2014).

6. Friedman, M. & McDonald, G. M. Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. CRC Crit. Rev. Plant Sci. 16, 55–132 (1997).

7. Sonawane, P. D. et al. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc. Natl Acad. Sci. USA 115, E5419–E5428 (2018).

8. Sonawane, P. D., Jozwiak, A., Panda, S. & Aharoni, A. ‘Hijacking’ core metabolism: a new panache for the evolution of steroidal glycoalkaloids structural diversity. Curr. Opin. Plant Biol. 55, 118–128 (2020).

9. Friedman, M. et al. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J. Agric. Food Chem. 57, 5727–5733 (2009).

10. Cárdenas, P. D. et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7, 10654 (2016).

11. Shakya, R. & Navarre, D. A. LC–MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J. Agric. Food Chem. 56, 6949–6958 (2008).

12. Sinden, S. L. & Sanford, L. L. Origin and inheritance of solarmarine glycoalkaloids in commercial potato cultivars. Am. Potato J. 58, 305–325 (1981).

13. Friedman, M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 63, 3323–3337 (2015).

14. Nakayasu, M. et al. Identification of α-tomatine 23-hydroxylase involved in the detoxification of a bitter glycoalkaloid. Plant Cell Physiol. 61, 21–28 (2020).

15. Cárdenas, P. D. et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat. Commun. 10, 5169 (2019).

16. Sánchez-Mata, M. C., Yokoyama, W. E., Hong, Y. J. & Prohens, J. α- Solasonine and α-solamargine contents of gboma (Solanum macrocarpon l.) and scarlet (Solanum aethiopicum l.) eggplants. J. Agric. Food Chem. 58, 5502–5508 (2010).

17. Umemoto, N. et al. Two Cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol. 171, 2458–2467 (2016).

18. Itkin, M. et al. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).

19. Nakayasu, M. et al. A dioxygenase catalyzes steroid 16α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiol. 175, 120–133 (2017).

20. Moehs, C. P., Allen, P. V., Friedman, M. & Belknap, W. R. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J. 11, 227–236 (1997).

21. McCue, K. F. et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci. 168, 267–273 (2005).

22. McCue, K. F. et al. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67, 1590–1597 (2006).

23. McCue, K. F. et al. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68, 327–334 (2007).

24. Itkin, M. et al. GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23, 4507–4525 (2011).

25. Shih, M.-J. & Kuć, J. α and β-solamarine in kennebec Solanum tuberosum leaves and aged tuber slices. Phytochemistry 13, 997–1000 (1974).

26. Nakayasu, M. et al. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 131, 70–77 (2018).

27. Kawai, Y., Ono, E. & Mizutani, M. Evolution and diversity of the 2- oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 78, 328–343 (2014).

28. Barchi, L. et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 9, 11769 (2019).

29. Thagun, C. et al. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol. 57, 961–975 (2016).

30. Nakayasu, M. et al. JRE4 is a master transcriptional regulator of defense- related steroidal glycoalkaloids in tomato. Plant J. 94, 975–990 (2018).

31. Barco, B., Kim, Y. & Clay, N. K. Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense. Nat. Commun. 10, 3444 (2019).

32. Barco, B. & Clay, N. K. Evolution of glucosinolate diversity via whole-genome duplications, gene rearrangements, and substrate promiscuity. Annu. Rev. Plant Biol. 70, 585–604 (2019).

33. Fan, P., Leong, B. J. & Last, R. L. Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Curr. Opin. Plant Biol. 49, 8–16 (2019).

34. Des Marais, D. L. & Rausher, M. D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454, 762–765 (2008).

35. Lee, H. J. et al. Identification of a 3β-hydroxysteroid dehydrogenase/3- ketosteroid reductase involved in α-tomatine biosynthesis in tomato. Plant Cell Physiol. 60, 1304–1315 (2019).

36. Akiyama, R. et al. Characterization of steroid 5α-reductase involved in α- tomatine biosynthesis in tomatoes. Plant Biotechnol. 36, 253–263 (2019).

37. Shimizu, K. et al. Hatching stimulation activity of steroidal glycoalkaloids toward the potato cyst nematode, globodera rostochiensis. Plant Biotechnol. 37, 1–7 (2020).

38. Kozukue, N. et al. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. J. Agric. Food Chem. 56, 11920–11928 (2008).

39. Nicot, N., Hausman, J.-F., Hoffmann, L. & Evers, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005).

40. Masclaux, F., Charpenteau, M., Takahashi, T., Pont-Lezica, R. & Galaud, J. P. Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem. Biophys. Res. Commun. 321, 364–369 (2004).

41. Hernandez, A. & Ruiz, M. T. An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression. Bioinformatics 14, 227–228 (1998).

42. Hesse, M., Meier, H., Zeeh, B. Spectroscopic Methods in Organic Chemistry 2nd edn 222 (R. Dunmur, M. Murray, Trans.) (Thieme, 2007).

43. Volz, H. & Gartner, H. N-acetoxyammonium ions - reactive intermediates in the polonovski reaction. Eur. J. Org. Chem. 2007, 2791–2801 (2007).

44. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

45. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

46. van Engelen, F. A. et al. pBINPLUS: an improved plant transformation vector based on pBIN19. Transg. Res. 4, 288–290 (1995).

参考文献をもっと見る