リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Observation of ultrafast amorphization dynamics in GeCu2Te3 thin films using echelon-based single-shot transient absorbance spectroscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Observation of ultrafast amorphization dynamics in GeCu2Te3 thin films using echelon-based single-shot transient absorbance spectroscopy

Yusuke Arashida 30715181 Takayuki Suzuki 90397084 Shuhei Nara Ikufumi Katayama 80432532 Yasuo Minami 60578368 Satoshi Shindo Yuji Sutou 80375196 Toshiharu Saiki 70261196 Jun Takeda 60202165 横浜国立大学

2021.08.09

概要

The compound GeCu2Te3 (GCT) has attracted considerable attention because of its several advantages for next-generation nonvolatile memories, including its higher thermal stability and lower volume change, with large optical contrast between the crystalline and amorphous phases. In this study, we demonstrate the ultrafast amorphization dynamics that occur in GCT by utilizing echelon-based single-shot transient absorbance spectroscopy and coherent phonon spectroscopy. We find that the timescale of the absorbance change accompanying amorphization is ∼2 ps, which is close to the dephasing time of the A1 optical phonons. Based on the observed results and the robust structural network of crystalline GCT, we discuss the amorphization dynamics in GCT by comparing it with that in the typical phase-change material Ge2Sb2Te5.

参考文献

1 M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

2 S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam, IBM J. Res. Dev. 52, 465 (2008).

3 H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Proc. IEEE 98, 2201 (2010).

4 G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, J. Vac. Sci. Technol. B 28, 223 (2010).

5 M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, Nat. Mater. 4, 347 (2005).

6 K. A. Cooley, H. M. Aldosari, K. Yang, and S. E. Mohney, J. Vac. Sci. Technol. A 38, 050805 (2020).

7 S. Lai and T. Lowrey, in International Electron Devices Meeting, Tech Digest 36.5.1 (2001).

8 N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69, 2849 (1991).

9 Y. Fukuyama, N. Yasuda, J. Kim, H. Murayama, Y. Tanaka, S. Kimura, K. Kato, S. Kohara, Y. Moritomo, T. Matsunaga, R. Kojima, N. Yamada, H. Tanaka, T. Ohshima, and M. Takata, Appl. Phys. Express 1, 045001 (2008).

10M. K. Santala, B. W. Reed, T. Topuria, S. Raoux, S. Meister, Y. Cui, T. LaGrange, G. H. Campbell, and N. D. Browning, J. Appl. Phys. 111, 024309 (2012).

11M. Hase, P. Fons, K. Mitrofanov, A. V. Kolobov, and J. Tominaga, Nat. Commun. 6, 8367 (2015).

12M. Konishi, H. Santo, Y. Hongo, K. Tajima, M. Hosoi, and T. Saiki, Appl. Opt. 49, 3470 (2010).

13J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, Appl. Phys. Lett. 104, 261903 (2014).

14M. Hada, W. Oba, M. Kuwahara, I. Katayama, T. Saiki, J. Takeda, and K. G. Nakamura, Sci. Rep. 5, 13530 (2015).

15Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, and Q. Gong, Adv. Opt. Mater. 5, 1600665 (2017).

16G. E. Delgado, A. J. Mora, M. Pirela, A. Velasquez-Velasquez, M. Villarreal, and B. J. Fernandez, Phys. Status Solidi (A) 201, 2900 (2004).

17T. Kamada, Y. Sutou, M. Sumiya, Y. Saito, and J. Koike, Thin Solid Films 520, 4389 (2012).

18Y. Saito, Y. Sutou, and J. Koike, J. Phys. Chem. C 118, 26973 (2014).

19Y. Saito, Y. Sutou, and J. Koike, Appl. Phys. Lett. 102, 051910 (2013).

20Y. Saito, Y. Sutou, P. Fons, S. Shindo, X. Kozina, J. M. Skelton, A. V. Kolobov, and K. Kobayashi, Chem. Mater. 29, 7440 (2017).

21S. Shindo, Y. Shuang, S. Hatayama, Y. Saito, P. Fons, A. V. Kolobov, K. Kobayashi, and Y. Sutou, J. Appl. Phys. 128, 165105 (2020).

22K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

23N. K. Chen, X. B. Li, X. R. Wang, M. J. Xia, S. Y. Xie, H. Wang, Z. Song, S. Zhang, and H. B. Sun, Acta Mater. 90, 88 (2015).

24P. Jovari, Y. Sutou, I. Kaban, Y. Saito, and J. Koike, Scr. Mater. 68, 122 (2013).

25J. R. Stellhorn, B. Paulus, S. Hosokawa, W.-C. Pilgrim, N. Boudet, N. Blanc, H. Ikemoto, S. Kohara, and Y. Sutou, Phys. Rev. B 101, 214110 (2020).

26R. Detemple, D. Wamwangi, M. Wuttig, and G. Bihlmayer, Appl. Phys. Lett. 83, 2572 (2003).

27M. Chen, K. A. Rubin, and R. W. Barton, Appl. Phys. Lett. 49, 502 (1986).

28J. A. Kalb, F. Spaepen, and M. Wuttig, J. Appl. Phys. 98, 054910 (2005).

29Y. Zhong, Y. Luo, X. Li, and J. Cui, Sci. Rep. 9, 18879 (2019).

30I. Katayama, K. Inoue, Y. Arashida, Y. Wu, H. Yang, T. Inoue, S. Chiashi, S. Maruyama, T. Nagao, M. Kitajima, and J. Takeda, Phys. Rev. B 101, 245408 (2020).

31H. Sakaibara, Y. Ikegaya, I. Katayama, and J. Takeda, Opt. Lett. 37, 1118 (2012). Applied Physics Letters ARTICLE scitation.org/journal/apl

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る