リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「X-ray study of ferroic octupole order producing anomalous Hall effect」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

X-ray study of ferroic octupole order producing anomalous Hall effect

Kimata, Motoi Sasabe, Norimasa Kurita, Kensuke Yamasaki, Yuichi Tabata, Chihiro Yokoyama, Yuichi Kotani, Yoshinori Ikhlas, Muhammad Tomita, Takahiro Amemiya, Kenta Nojiri, Hiroyuki Nakatsuji, Satoru Koretsune, Takashi Nakao, Hironori Arima, Taka-hisa Nakamura, Tetsuya 京都大学 DOI:10.1038/s41467-021-25834-7

2021

概要

Recently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn₃X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn₃Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.

この論文で使われている画像

参考文献

1. Stöhr, J. Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999).

2. Nakamura, T. & Suzuki, M. Recent progress of the X-ray magnetic circular dichroism technique for element-specific magnetic analysis. J. Phys. Soc. Jpn. 82, 021006 (2013).

3. van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroism—a versatile tool to study magnetism. Coord. Chem. Rev. 277, 95–129 (2014).

4. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a noncollinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

5. Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

6. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

7. Guo, H. et al. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv. Mater. 32, 2002300 (2020).

8. Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron 1, 172–177 (2018).

9. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

10. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

11. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon 12, 73–78 (2018).

12. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a noncollinear antiferromagnet. Nature 565, 627–630 (2019).

13. Tomiyoshi, S. Polarized neutron diffraction study of the spin structure of Mn3Sn. J. Phys. Soc. Jpn. 51, 803–810 (1982).

14. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).

15. Tomiyoshi, S. Polarized neutron diffraction study of the spin structure of Mn3Sn. J. Phys. Soc. Jpn. 51, 803 (1982).

16. Tomiyoshi, S., Yamaguchi, Y. & Nagamiya, T. Triangular spin configuration and weak ferromagnetism of Mn3Ge. J. Magn. Magn. Mater. 31-34, 629–630 (1983).

17. Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

18. Yamasaki, Y., Nakao, H. & Arima, T.-H. Augmented magnetic octupole in Kagomé 120-degree antiferromagnets detectable via X-ray magnetic circular dichroism. J. Phys. Soc. Jpn. 89, 083703 (2020).

19. Watanabe, H. & Yanase, Y. Magnetic hexadecapole order and magnetopiezoelectric metal state in Ba(1-x)KxMn2As2. Phys. Rev. B 96, 064432 (2017).

20. Watanabe, H. & Yanase, Y. Group-theoretical classification of multipole order: emergent responses and candidate materials. Phys. Rev. B 98, 245129 (2018).

21. Oguchi, T. & Shishidou, T. Anisotropic property of magnetic dipole in bulk, surface, and overlayer systems. Phys. Rev. B 70, 024412 (2004).

22. Kusunose, H., Oiwa, R. & Hayami, S. Complete multipole basis set for singlecentered electron systems. J. Phys. Soc. Jpn. 89, 104704 (2020).

23. Schmitz, D. et al. The dipole moment of the spin density as a local indicator for phase transitions. Sci. Rep. 4, 5760 (2015).

24. Shibata, G. et al. Anisotropic spin-density distribution and magnetic anisotropy of strained La1−xSrxMnO3 thin films: angle-dependent X-ray magnetic circular dichroism. npj Quant. Mater. 3, 3 (2018).

25. Asakura, D. et al. Magnetic states of Mn and Co atoms at Co2MnGe/MgO interfaces seen via soft X-ray magnetic circular dichroism. Phys. Rev. B 82, 184419 (2010).

26. Miyamoto, K. et al. Orbital magnetic moment of “half-metallic” Co2MnGe. Phys. B 351, 347–350 (2004).

27. Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotech 14, 131–136 (2019).

28. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152 (1995).

29. Nagai, K. et al. Electronic structure and magnetic properties of the halfmetallic ferrimagnet Mn2VAl probed by soft X-ray spectroscopies. Phys. Rev. B 97, 035143 (2018).

30. Dürr, H. A., Laan, G., van der., Spanke, D., Hillebrecht, F. U. & Brookes, N. B. Electron-correlation-induced magnetic order of ultrathin Mn films. Phys. Rev. B 56, 8156 (1997).

31. Crocombette, J., Thole, B. & Jollet, F. The importance of the magnetic dipole term in magneto-circular X-ray absorption dichroism for 3d transition metal compounds. J. Phys. Condens. Matter 8, 4095 (1996).

32. Sung, N. H., Ronning, F., Thompson, J. D. & Bauer, E. D. Magnetic phase dependence of the anomalous Hall effect in Mn3Sn single crystals. Appl. Phys. Lett. 112, 132406 (2018).

33. Cable, J. W., Wakabayashi, N. & Radhakrishna, P. A neutron study of the magnetic structure of Mn3Sn. Solid State Commun. 88, 161–166 (1993).

34. Sasabe, N., Kimata, M. & Nakamura, T. Presence of X-ray magnetic circular dichroism signal for zero-magnetization antiferromagnetic state. Phys. Rev. Lett. 126, 157402 (2021).

35. Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).

36. Caillat, T., Fleurial, J.-P. & Borshchevsky, A. Bridgman-solution crystal growth and characterization of the skutterudite compounds CoSb3 and RhSb3. J. Cryst. Growth 166, 722–726 (1996).

37. Cowan, R. D. The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981).

38. Taguchi, M., Uozumi, T. & Kotani, A. Theory of X-ray photoemission and X-ray emission spectra in Mn compounds. J. Phys. Soc. Jpn. 66, 247–256 (1997).

39. Matsubara, M., Uozumi, T., Kotani, A., Harada, Y., & Shin, S. Polarization Dependence of resonant X-ray emission spectra in early transition metal compounds. J. Phys. Soc. Jpn. 69, 1558–1565 (2000).

40. Giannozzi, P. et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

42. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

43. Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943 (1992).

44. Carra, P., Thole, B. T., Altarelli, M. & Wang, X. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 70, 694 (1993).

参考文献をもっと見る