リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sonic hedgehog expands neural stem cells in the neocortical region leading to an expanded and wrinkled neocortical surface」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sonic hedgehog expands neural stem cells in the neocortical region leading to an expanded and wrinkled neocortical surface

MOHAMMED, J.M. SHQIRAT 京都大学 DOI:10.14989/doctor.k23464

2021.09.24

概要

The cerebral neocortex, a six-layered folded structure, is the hallmark of complex motor, sensory and cognitive functions. Higher mammals, including humans, possess the neocortex with complicated wrinkles, whereas other species have a smooth, less developed neocortex. Sonic hedgehog (Shh), a key morphogen, is expressed in the floor plate of the developing neural tube and plays a key role in establishing the dorso-ventral (D-V) axis. Increasing evidence has revealed that Shh promotes cell proliferation of various types of neural cells. However, there have been few studies that demonstrated the impact of Shh on neocortical neural stem cells (NSCs) and progenitors in the developing brain.

To investigate the effect of Shh on neocortical development, firstly, in utero electroporatio n experiments was performed, using Shh expression vectors and observed that transient overexpression of Shh led to an increase in Pax6+ NSCs and Tbr2+ intermediate progenitor cells (IPCs) in the lateral ventricles by promoting cell proliferation. Furthermo re, the observation of NSCs transfected with Shh expression vectors continued symmetric proliferative divisions.

To analyze the effect of Shh on neocortical development more in detail, a transgenic (Tg) mice were generated ,using the Tet-on system, in which Shh and d2EGFP are co-expressed in NSCs and neural progenitors under the control of the nestin promoter. The Shh-overexpressing Tg mice exhibited a bigger brain size, a dramatic expansion of lateral ventricles, a tangential extension of the VZ/SVZ of the neocortical region, and the formation of wrinkles on the neocortical surface. BrdU incorporation experiments and immunostaining with Ki67 revealed the promoted cell proliferation in the VZ/SVZ of the Tg brain. Pax6+ NSCs were increased in the VZ/SVZ at the expense of Tbr2+ IPCs, indicating that neuronal differentiation was suppressed in the neocortical region of Tg mice. In addition, the observation of many of NSCs continued symmetric proliferative divisions in th e Tg brain. Based on the observation that Shh-expressing cells were sparsely distributed in the VZ/SVZ of the Tg brain, these results suggested that Shh secreted from a fraction of VZ/SVZ cells exerted the non-cell autonomous effect on NSCs in broad areas of the neocortical region. Upregulation of Gli1 in the VZ/SVZ in broad areas of the Tg brain corroborated the suggestion that Shh proteins were widely distributed and caused the activation of Shh signaling in broad areas, thus expanding NSCs by a non-cell autonomous effect.

In addition, it was found that the expression level of Hes1 was significantly upregulated and that of Neurog2 was reduced in the neocortical region of the Shh-overexpressing Tg brain, suggesting that the upregulation of Hes1 led to the inhibition of neuronal differentiation by repressing or counteracting Neurog2 and maintained the proliferation of NSCs in the neocortical region of Tg mice. for further examination, whether Shh overexpression exerted a ventralization effect on the developing telencephalon by analyzing the expression patterns and levels of several D-V marker genes, and observed that some ventral marker genes such as Ascl1, Dlx1 and Gad1 were ectopically upregulated in the dorsal telencephalon of Tg mice. However, regardless of the upregulation of these genes, the neocortical layer structure was not severely disturbed in the postnatal Tg brain. These results indicated that NSCs in the neocortical region of Tg mice were capable of producing cortical layer neuron s and formed orderly cortical layers, without inducing a drastic disturbance in D-V patterning.
In conclusion, our Tg system enabled control of the timing and levels of Shh expression by modulating the doxycycline dosage in drinking water, and thus succeeded in the acquisition of a prominently enlarged neocortica l surface with complicated wrinkles and folds. These results suggested that enhanced activation of Shh signaling during neocortical development might have contributed to mammalian brain evolution.

この論文で使われている画像

参考文献

Bansod, S., Kageyama, R., & Ohtsuka, T. (2017). Hes5 regulates the transition timing of neurogenesis and gliogenesis in mammalian neocortical development. Development, 144(17), 3156–3167. https://doi.org/10.1242/dev.147256

Borrell, V., & Götz, M. (2014). Role of radial glial cells in cerebral cortex folding. Current Opinion in Neurobiology, 27, 39–46. https:// doi.org/10.1016/j.conb.2014.02.007. Epub 2014 Mar 12.

Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., & Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599), 407–413. https://doi.org/10.1038/383407a0

Dale, J. K., Vesque, C., Lints, T. J., Sampath, T. K., Furley, A., Dodd, J., & Placzek, M. (1997). Cooperation of BMP7 and SHH in the induc- tion of forebrain ventral midline cells by prechordal mesoderm. Cell, 90(2), 257–269. https://doi.org/10.1016/S0092-8674(00)80334-7

Dave, R. K., Ellis, T., Toumpas, M. C., Robson, J. P., Julian, E., Adolphe, C., Bartlett, P. F., Cooper, H. M., Reynolds, B. A., & Wainwright, B. J. (2011). Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PLoS One, 6(2), e14680. https://doi.org/10.1371/journal.pone.0014680

Echelard, Y., Epstein, D. J., St-Jacques, B., Shen, L., Mohler, J., McMahon, J. A., & McMahon, A. P. (1993). Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell, 75(7), 1417–1430. https://doi. org/10.1016/0092-8674(93)90627-3

Ericson, J., Muhr, J., Placzek, M., Lints, T., Jessell, T. M., & Edlund, T. (1995). Sonic hedgehog induces the differentiation of ven- tral forebrain neurons: A common signal for ventral pattern-ing within the neural tube. Cell, 81(5), 747–756. https://doi. org/10.1016/0092-8674(95)90536-7

Fode, C., Ma, Q., Casarosa, S., Ang, S. L., Anderson, D. J., & Guillemot, F. (2000). A role for neural determination genes in spec- ifying the dorsoventral identity of telencephalic neurons. Genes & Development, 14(1), 67–80.

Fuccillo, M., Joyner, A. L., & Fishell, G. (2006). Morphogen to mito- gen: The multiple roles of hedgehog signalling in vertebrate neu- ral development. Nature Reviews Neuroscience, 7(10), 772–783. https://doi.org/10.1038/nrn1990

Guillemot, F., & Joyner, A. L. (1993). Dynamic expression of the mu- rine Achaete-Scute homologue Mash-1 in the developing nervous system. Mechanisms of Development, 42(3), 171–185. https://doi. org/10.1016/0925-4773(93)90006-J

Kohtz, J. D., Baker, D. P., Corte, G., & Fishell, G. (1998). Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development, 125(24), 5079–5089.

Komada, M., Iguchi, T., Takeda, T., Ishibashi, M., & Sato, M. (2013). Smoothened controls cyclin D2 expression and regulates the generation of intermediate progenitors in the developing cor- tex. Neuroscience Letters, 547, 87–91. https://doi.org/10.1016/j. neulet.2013.05.006

Komada, M., Saitsu, H., Kinboshi, M., Miura, T., Shiota, K., & Ishibashi, M. (2008). Hedgehog signaling is involved in develop- ment of the neocortex. Development, 135(16), 2717–2727. https:// doi.org/10.1242/dev.015891

Kong, J. H., Yang, L., Dessaud, E., Chuang, K., Moore, D. M., Rohatgi, R., Briscoe, J., & Novitch, B. G. (2015). Notch activity modulates the responsiveness of neural progenitors to Sonic hedgehog signal- ing. Developmental Cell, 33(4), 373–387. https://doi.org/10.1016/j. devcel.2015.03.005

LaMonica, B. E., Lui, J. H., Wang, X., & Kriegstein, A. R. (2012). OSVZ progenitors in the human cortex: An updated perspective on neurodevelopmental disease. Current Opinion in Neurobiology, 22(5), 747–753. https://doi.org/10.1016/j.conb.2012.03.006. Epub 2012 Apr 7.

Machold, R., Hayashi, S., Rutlin, M., Muzumdar, M. D., Nery, S., Corbin, J. G., Gritli-Linde, A., Dellovade, T., Porter, J. A., Rubin, L. L., Dudek, H., McMahon, A. P., & Fishell, G. (2003). Sonic hedge- hog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 39(6), 937–950. https://doi.org/10.1016/s0896-6273(03)00561-0

Martínez, C., Cornejo, V. H., Lois, P., Ellis, T., Solis, N. P., Wainwright, B. J., & Palma, V. (2013). Proliferation of murine midbrain neu-ral stem cells depends upon an endogenous Sonic hedgehog (Shh) source. PLoS One, 8(6), e65818. https://doi.org/10.1371/journ al.pone.0065818. Print 2013.

Nonaka-Kinoshita, M., Reillo, I., Artegiani, B., Martínez-Martínez, M. Á., Nelson, M., Borrell, V., & Calegari, F. (2013). Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO Journal, 32(13), 1817–1828. https://doi.org/10.1038/emboj.2013.96. Epub 2013 Apr 26.

Ohtsuka, T., Ishibashi, M., Gradwohl, G., Nakanishi, S., Guillemot, F., & Kageyama, R. (1999). Hes1 and Hes5 as notch effectors in mam- malian neuronal differentiation. EMBO Journal, 18, 2196–2207. https://doi.org/10.1093/emboj/18.8.2196

Ohtsuka, T., Sakamoto, M., Guillemot, F., & Kageyama, R. (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in ex- pansion of neural stem cells of the developing brain. Journal of Biological Chemistry, 276, 30467–30474. https://doi.org/10.1074/ jbc.M102420200

Ohtsuka, T., Shimojo, H., Matsunaga, M., Watanabe, N., Kometani, K., Minato, N., & Kageyama, R. (2011). Gene expression profiling of neural stem cells and identification of regulators of neural differ- entiation during cortical development. Stem Cells, 29, 1817–1828. https://doi.org/10.1002/stem.731

Palma, V., Lim, D. A., Dahmane, N., Sánchez, P., Brionne, T. C., Herzberg, C. D., Gitton, Y., Carleton, A., Alvarez-Buylla, A., & Ruiz i Altaba, A. (2005). Sonic hedgehog controls stem cell behav- ior in the postnatal and adult brain. Development, 132(2), 335–344. https://doi.org/10.1242/dev.01567. Epub 2004 Dec 16.

Palma, V., & Ruiz i Altaba, A. (2004). Hedgehog-GLI signaling regu- lates the behavior of cells with stem cell properties in the developing neocortex. Development, 131(2), 337–345. https://doi.org/10.1242/dev.00930. Epub 2003 Dec 17.

Patten, I., & Placzek, M. (2000). The role of Sonic hedgehog in neu- ral tube patterning. Cellular and Molecular Life Sciences, 57(12), 1695–1708. https://doi.org/10.1007/PL00000652

Porteus, M. H., Bulfone, A., Liu, J. K., Puelles, L., Lo, L. C., & Rubenstein, J. L. (1994). DLX-2, MASH-1, and MAP-2 expres- sion and bromodeoxyuridine incorporation define molecularly dis- tinct cell populations in the embryonic mouse forebrain. Journal of Neuroscience, 14(11 Pt 1), 6370–6383. https://doi.org/10.1523/ JNEUROSCI.14-11-06370.1994

Shikata, Y., Okada, T., Hashimoto, M., Ellis, T., Matsumaru, D., Shiroishi, T., Ogawa, M., Wainwright, B., & Motoyama, J. (2011). Ptch1-mediated dosage-dependent action of Shh signaling reg- ulates neural progenitor development at late gestational stages. Developmental Biology, 349(2), 147–159. https://doi.org/10.1016/j. ydbio.2010.10.014

Shimada, I. S., Somatilaka, B. N., Hwang, S. H., Anderson, A. G., Shelton, J. M., Rajaram, V., Konopka, G., & Mukhopadhyay, S. (2019). Derepression of Sonic hedgehog signaling upon Gpr161 deletion unravels forebrain and ventricular abnormalities. Developmental Biology, 450(1), 47–62. https://doi.org/10.1016/j.ydbio.2019.03.011. Epub 2019 Mar 23.

Sommer, L., Ma, Q., & Anderson, D. J. (1996). Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Molecular and Cellular Neurosciences, 8(4), 221–241. https://doi.org/10.1006/ mcne.1996.0060

Sun, T., & Hevner, R. F. (2014). Growth and folding of the mammalian cerebral cortex: From molecules to malformations. Nature Reviews Neuroscience, 15(4), 217–232. https://doi.org/10.1038/nrn3707

Tan, S. L., Nishi, M., Ohtsuka, T., Matsui, T., Takemoto, K., Kamio- Miura, A., Aburatani, H., Shinkai, Y., & Kageyama, R. (2012). Essential roles of the histone methyltransferase ESET in the epi- genetic control of neural progenitor cells during development. Development, 139, 3806–3816. https://doi.org/10.1242/dev.082198

Toresson, H., Potter, S. S., & Campbell, K. (2000). Genetic control of dorsal-ventral identity in the telencephalon: Opposing roles for Pax6 and Gsh2. Development, 127(20), 4361–4371.

Wallace, V. A. (1999). Purkinje-cell-derived Sonic hedgehog regu- lates granule neuron precursor cell proliferation in the developing mouse cerebellum. Current Biology, 9(8), 445–448. https://doi. org/10.1016/S0960-9822(99)80195-X

Wang, L., Hou, S., & Han, Y. G. (2016). Hedgehog signaling pro- motes basal progenitor expansion and the growth and folding of the neocortex. Nature Neuroscience, 19(7), 888–896. https://doi. org/10.1038/nn.4307

Wang, X., Tsai, J. W., LaMonica, B., & Kriegstein, A. R. (2011). A new subtype of progenitor cell in the mouse embryonic neocortex. Nature Neuroscience, 14, 555–561. https://doi.org/10.1038/nn.2807 Watanabe, N., Kageyama, R., & Ohtsuka, T. (2015). Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression. Development, 142(13), 2278–2290. https://doi.org/10.1242/dev.120477

Xu, Q., Wonders, C. P., & Anderson, S. A. (2005). Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ven- tral telencephalon. Development, 132(22), 4987–4998. https://doi. org/10.1242/dev.02090

Yabut, O. R., & Pleasure, S. J. (2018). Sonic hedgehog signaling rises to the surface: Emerging roles in neocortical development. Brain Plasticity, 3(2), 119–128. https://doi.org/10.3233/BPL-180064

Yang, C., Li, S., Li, X., Li, H., Li, Y., Zhang, C., & Lin, J. (2019). Effect of sonic hedgehog on motor neuron positioning in the spinal cord during chicken embryonic development. Journal of Cellular and Molecular Medicine, 23(5), 3549–3562. https://doi.org/10.1111/jcmm.14254

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る