リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A mouse model of microglia-specific ablation in the embryonic central nervous system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A mouse model of microglia-specific ablation in the embryonic central nervous system

李, 晨旻 名古屋大学

2022.01.26

概要

【Introduction】
Microglia, a type of mononuclear cells in the central nervous system (CNS), originate from embryonic macrophage precursors in the yolk sac and invade the brain at embryonic day (E) 9.5–10.5. Microglia are thought to participate in various CNS developmental events. However, studies reporting functions of microglia during the embryonic period are significantly fewer than those during postnatal development, partly due to the lack of an effective microglial ablation system in the embryo. In addition to parenchymal microglia, several types of macrophages reside in CNS interfaces. Given that these CNS-associated macrophages (CAMs) are mostly of embryonic origin and colonize CNS interfaces during the embryonic stage like microglia, embryonic microglial ablation systems for studying their functions are required to minimize damage to CAMs.
Our previous study reported that Siglec-H is a microglia-specific marker that is almost negative for CAMs. Accordingly, systemic administration of diphtheria toxin (DT) to Siglechdtr/dtr mice, in which the gene encoding DTR was knocked into the Siglech locus, achieved specific ablation of microglia on postnatal day 7 or after. Given that the microglia-specific expression of Siglec-H was observed at the later embryonic stage in our previous study, we expected that this ablation system would be applicable to embryos.

【Method】
We mated Siglechdtr/dtr male mice with wild-type female mice to generate Siglechdtr/+ embryos. A plug check was conducted in the morning, and the day when a vaginal plug was detected was regarded as E0.5. Siglechdtr/+ embryos at E10.5, 12.5, 14.5, and 16.5 were used. Because intraperitoneal injection of DT into dams was not able to ablate microglia in their embryos in our preliminary experiment, we injected DT into the amniotic fluid of Siglechdtr/+ embryos on the hypothesis that DT infused into the amniotic fluid might be transported to the CNS. Pregnant mice were anesthetized with isoflurane, and an abdominal incision was made. With illuminating embryos in the uterus by a flexible light source, DT (20 ng/μl) diluted with PBS was injected into amniotic fluid using glass micropipettes. The volume of DT solution was determined depending on the weight of embryos: 2, 5, 8, and 11 μl for E10.5, 12.5, 14.5, and 16.5, respectively (DT dose: approximately 280 ng/embryonic weight [g]). After several days, embryos were dissected from the uterus, fixed in Zamboni’s fixative, and dehydrated in 25% sucrose. Then, coronal sections (16 μm thickness) were prepared and stained with antibodies. Fluorescent images were visualized using a confocal microscope.

【Result】
First, we confirmed that Siglec-H was specifically expressed by microglia but not macrophages in the early embryonic CNS. Then we tested in utero injection at E10.5, given that microglia invade the brain at E9.5–10.5. We immunostained sections of cerebral cortex and spinal cords with anti-Iba-1 and anti-CD206 antibody and defined parenchymal Iba-1+CD206– cells and meningeal Iba-1+CD206+ cells as microglia and macrophages, respectively. Immunochemistry and subsequent quantitative analyses found that the number of Iba-1+CD206– microglia in DT groups were decreased to 21.8% and 36.5% at E12.5 and 14.5, respectively, and then returned to the control level at E16.5 and E18.5 in the cerebral cortex. In contrast, there was no significant difference in the number of Iba- 1+CD206+ meningeal macrophages between the PBS and DT groups at any time point. In addition to cerebral cortex, we also examined spinal cord with injection of DT at E10.5 and obtained the same results. Therefore, microglia can be depleted for 4 days in the CNS after a single injection of DT at E10.5 in utero. Next, to test whether this microglial ablation model was also effective at later embryonic stages, we changed the injection time points. We injected DT at E12.5, E14.5, or E16.5 and analyzed the embryos after 2 days. We examined three regions (cerebral cortex, spinal cord, and hippocampus). Regardless of the injection time points, microglia were ablated 2 days after DT injection in utero in all these three regions, although meningeal macrophages were not affected. Finally, we tested ablation of microglia in specific regions where microglia are transiently accumulated to exert some functions. Previous studies showed that microglia accumulate in the intermediate zone/subventricular zone/ventricular zone (IZ/SVZ/VZ) of the cerebral cortex at E15.5–16.5. DT injection at E14.5 significantly decreased the microglial number in IZ/SVZ/VZ at E16.5. In addition to IZ/SVZ/VZ, microglia can also be ablated in dorsal root entry zone and region around corpus callosum, where microglia were also shown to transiently accumulate. Collectively, this ablation system can eliminate microglia throughout the CNS, including the specific regions where microglial density is transiently high, at any time point after microglial colonization in the CNS.

【Conclusion】
We have established a microglia-specific ablation model that is effective throughout the CNS at any time point of embryonic stages after microglial expansion to the CNS. Microglial dysregulation during the embryonic stage is thought to result in the abnormal formation of neural circuits, which eventually causes developmental brain disorders. To develop new therapeutic strategies, understanding microglial functions is necessary. Future studies using this ablation system may reveal novel or precise functions of embryonic microglia.

この論文で使われている画像

参考文献

Angelim, M.K.S.C., de S. Maia, L.M.S., Mouffle, C., Ginhoux, F., Low, D., Amancio-Dos- Santos, A., Makhoul, J., Le Corronc, H., Mangin, J.M., Legendre, P., 2018. Embryonic macrophages and microglia ablation alter the development of dorsal root gan- glion sensory neurons in mouse embryos. Glia 66, 2470–2486, http://dx.doi.org/ 10.1002/glia.23499.

Bennett, M.L., Bennett, F.C., Liddelow, S.A., Ajami, B., Zamanian, J.L., Fernhoff, N.B., Mulinyawe, S.B., Bohlen, C.J., Adil, A., Tucker, A., Weissman, I.L., Chang, E.F., Li, G., Grant, G.A., Hayden Gephart, M.G., Barres, B.A., 2016. New tools for study- ing microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. U. S. A. 113, E1738–E1746, http://dx.doi.org/10.1073/pnas.1525528113.

Buch, T., Heppner, F.L., Tertilt, C., Heinen, T.J.A.J., Kremer, M., Wunderlich, F.T., Jung, S., Waisman, A., 2005. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426, http://dx. doi.org/10.1038/nmeth762.

Buttgereit, A., Lelios, I., Yu, X., Vrohlings, M., Krakoski, N.R., Gautier, E.L., Nishinaka- mura, R., Becher, B., Greter, M., 2016. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406, http://dx.doi. org/10.1038/ni.3585.

Cronk, J.C., Filiano, A.J., Louveau, A., Marin, I., Marsh, R., Ji, E., Goldman, D.H., Smirnov, I., Geraci, N., Acton, S., Overall, C.C., Kipnis, J., 2018. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215, 1627–1647, http://dx.doi.org/ 10.1084/jem.20180247.

Cunningham, C.L., Martínez-Cerden˜o, V., Noctor, S.C., 2013. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233, http://dx.doi.org/10.1523/JNEUROSCI.3441-12.2013.

Elmore, M.R.P., Najafi, A.R., Koike, M.A., Dagher, N.N., Spangenberg, E.E., Rice, R.A., Kitazawa, M., Matusow, B., Nguyen, H., West, B.L., Green, K.N., 2014. Colony- stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397, http://dx.doi.org/10.1016/j.neuron.2014.02.040.

Erblich, B., Zhu, L., Etgen, A.M., Dobrenis, K., Pollard, J.W., 2011. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain devel- opment and olfactory deficits. PLoS One 6, http://dx.doi.org/10.1371/journal. pone.0026317.

Galea, I., Palin, K., Newman, T.A., Van Rooijen, N., Perry, V.H., Boche, D., 2005. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49, 375–384, http://dx.doi.org/ 10.1002/glia.20124.

Ginhoux, F., Guilliams, M., 2016. Tissue-resident macrophage ontogeny and homeo- stasis. Immunity 44, 439–449, http://dx.doi.org/10.1016/j.immuni.2016.02.024. Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M.F., Con- way, S.J., Ng, L.G., Stanley, E.R., Samokhvalov, I.M., Merad, M., 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845.

Goldmann, T., Wieghofer, P., Jordão, M.J.C., Prutek, F., Hagemeyer, N., Frenzel, K., Amann, L., Staszewski, O., Kierdorf, K., Krueger, M., Locatelli, G., Hochgerner, H., Zeiser, R., Epelman, S., Geissmann, F., Priller, J., Rossi, F.M.V., Bechmann, I., Kerschensteiner, M., Linnarsson, S., Jung, S., Prinz, M., 2016. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805, http://dx.doi.org/10.1038/ni.3423.

Han, J., Zhu, K., Zhang, X.M., Harris, R.A., 2019. Enforced microglial depletion and repopulation as a promising strategy for the treatment of neurological disorders. Glia 67, 217–231, http://dx.doi.org/10.1002/glia.23529.

Harrison, S.J., Nishinakamura, R., Jones, K.R., Monaghan, A.P., 2012. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: Implications for neural abnormalities in Townes-Brocks syndrome. DMM Dis. Model. Mech. 5, 351–365, http://dx.doi.org/10.1242/dmm.002873.

Hattori, Y., Miyata, T., 2018. Microglia extensively survey the developing cortex via the CXCL12/CXCR4 system to help neural progenitors to acquire differentiated properties. Genes Cells 23, 915–922, http://dx.doi.org/10.1111/gtc.12632.

Hattori, Y., Naito, Y., Tsugawa, Y., Nonaka, S., Wake, H., Nagasawa, T., Kawaguchi, A., Miyata, T., 2020. Transient microglial absence assists postmigratory cortical neurons in proper differentiation. Nat. Commun. 11, http://dx.doi.org/10.1038/ s41467-020-15409-3.

Hoeffel, G., Chen, J., Lavin, Y., Low, D., Almeida, F.F., See, P., Beaudin, A.E., Lum, J., Low, I., Forsberg, E.C., Poidinger, M., Zolezzi, F., Larbi, A., Ng, L.G., Chan, J.K.Y., Greter, M., Becher, B., Samokhvalov, I.M., Merad, M., Ginhoux, F., 2015. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue- resident macrophages. Immunity 42, 665–678, http://dx.doi.org/10.1016/j. immuni.2015.03.011.

Kaiser, T., Feng, G., 2019. Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia, 6., pp. 1–18, http://dx.doi.org/10.1101/ 624825, bioRxiv.

Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E.G., Wieghofer, P., Heinrich, A., Riemke, P., Hölscher, C., Müller, D.N., Luckow, B., Brocker, T., Debowski, K., Fritz, G., Opdenakker, G., Diefenbach, A., Biber, K., Heikenwalder, M., Geissmann, F., Rosenbauer, F., Prinz, M., 2013. Microglia emerge from ery- thromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280, http://dx.doi.org/10.1038/nn.3318.

Konishi, H., Kobayashi, M., Kunisawa, T., Imai, K., Sayo, A., Malissen, B., Crocker, P.R., Sato, K., Kiyama, H., 2017. Siglec-H is a microglia-specific marker that dis- criminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes. Glia 65, 1927–1943, http://dx.doi.org/10.1002/glia.23204.

Konishi, H., Kiyama, H., Ueno, M., 2019. Dual functions of microglia in the formation and refinement of neural circuits during development. Int. J. Dev. Neurosci. 77, 18–25, http://dx.doi.org/10.1016/j.ijdevneu.2018.09.009.

Konishi, H., Okamoto, T., Hara, Y., Komine, O., Tamada, H., Maeda, M., Osako, F., Kobayashi, M., Nishiyama, A., Kataoka, Y., Takai, T., Udagawa, N., Jung, S., Ozato, K., Tamura, T., Tsuda, M., Yamanaka, K., Ogi, T., Sato, K., Kiyama, H., 2020. Astro- cytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J. 39, 1–18, http://dx.doi.org/10.15252/embj.2020104464.

Lee, C.M., Zhou, L., Liu, J., Shi, J., Geng, Y., Liu, M., Wang, Jiaruo, Su, X., Barad, N., Wang, Junbang, Sun, Y.E., Lin, Q., 2020. Single-cell RNA-seq analysis revealed long-lasting adverse effects of tamoxifen on neurogenesis in prenatal and adult brains. Proc. Natl. Acad. Sci. U. S. A. 117, 19578–19589, http://dx.doi.org/10. 1073/pnas.1918883117.

Lei, F., Cui, N., Zhou, C., Chodosh, J., Vavvas, D.G., Paschalis, E.I., 2020. CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc. Natl. Acad. Sci. U. S. A. 117, 23336–23338, http://dx.doi.org/10.1073/pnas.1922788117.

Malek, A., Sager, R., Schneider, H., 1998. Transport of proteins across the human pla- centa. Am. J. Reprod. Immunol. 40, 347–351, http://dx.doi.org/10.1111/j.1600- 0897.1998.tb00064.x.

Marín-Teva, J.L., Dusart, I., Colin, C., Gervais, A., Van Rooijen, N., Mallat, M., 2004. Microglia promote the death of developing purkinje cells. Neuron 41, 535–547, http://dx.doi.org/10.1016/S0896-6273(04)00069-8.

Marsters, C.M., Nesan, D., Far, R., Klenin, N., Pittman, Q.J., Kurrasch, D.M., 2020. Embryonic microglia influence developing hypothalamic glial populations. J. Neuroinflammation 17, 1–17, http://dx.doi.org/10.1186/s12974-020-01811-7.

Masuda, T., Amann, L., Sankowski, R., Staszewski, O., Lenz, M., dr Errico, P., Snaidero, N., Costa Jordão, M.J., Böttcher, C., Kierdorf, K., Jung, S., Priller, J., Misgeld, T., Vlachos, A., Luehmann, M.M., Knobeloch, K.P., Prinz, M., 2020. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21, 802–815, http://dx. doi.org/10.1038/s41590-020-0707-4.

McKinsey, G.L., Lizama, C.O., Keown-Lang, A.E., Niu, A., Santander, N., Larpthaveesarp, A., Chee, E., Gonzalez, F.F., Arnold, T.D., 2020. A new genetic strategy for targeting microglia in development and disease. Elife 9, 1–34, http://dx.doi.org/10.7554/eLife.54590.

Mildner, A., Huang, H., Radke, J., Stenzel, W., Priller, J., 2017. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65, 375–387, http://dx.doi.org/10.1002/glia.23097.

Miyamoto, A., Wake, H., Ishikawa, A.W., Eto, K., Shibata, K., Murakoshi, H., Koizumi, S., Moorhouse, A.J., Yoshimura, Y., Nabekura, J., 2016. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7, http:// dx.doi.org/10.1038/ncomms12540.

Munro, D.A.D., Bradford, B.M., Mariani, S.A., Hampton, D.W., Vink, C.S., Chandran, S., Hume, D.A., Pridans, C., Priller, J., 2020. CNS macrophages differentially rely on an intronic Csf1r enhancer for their development. Development 147, http://dx. doi.org/10.1242/dev.194449.

Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T.A., Guiducci, E., Dumas, L., Ragozzino, D., Gross, C.T., 2011. Synaptic pruning by microglia is necessary for normal brain development. Science (80-.) 333, 1456–1458, http://dx.doi.org/10.1126/science.1202529.

Pont-Lezica, L., Beumer, W., Colasse, S., Drexhage, H., Versnel, M., Bessis, A., 2014. Microglia shape corpus callosum axon tract fasciculation: Functional impact of prenatal inflammation. Eur. J. Neurosci. 39, 1551–1557, http://dx.doi.org/10. 1111/ejn.12508.

Prinz, M., Erny, D., Hagemeyer, N., 2017. Ontogeny and homeostasis of CNS myeloid cells. Nat. Immunol. 18, 385–392, http://dx.doi.org/10.1038/ni.3703.

Rigato, C., Buckinx, R., Le-Corronc, H., Rigo, J.M., Legendre, P., 2011. Pattern of inva- sion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. Glia 59, 675–695, http://dx.doi.org/10. 1002/glia.21140.

Rojo, R., Sauter, K.A., Lefevre, L., Hume, D.A., Pridans, C., bioRxiv 2018. Mater- nal Tamoxifen Treatment Expands the Macrophage Population of Early Mouse Embryos., pp. 296749, http://dx.doi.org/10.1101/296749.

Rosin, J.M., Vora, S.R., Kurrasch, D.M., 2018. Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, includ- ing accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain Behav. Immun. 73, 682–697, http://dx.doi.org/10.1016/j.bbi.2018.07.023.

Saito, K., Okamoto, M., Watanabe, Y., Noguchi, N., Nagasaka, A., Nishina, Y., Shinoda, T., Sakakibara, A., Miyata, T., 2019. Dorsal-to-ventral cortical expansion is phys- ically primed by ventral streaming of early embryonic preplate neurons. Cell Rep. 29 (1555–1567), e5, http://dx.doi.org/10.1016/j.celrep.2019.09.075.

Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., Stevens, B., 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705, http://dx.doi.org/10.1016/j.neuron.2012.03.026.

Silva, C.G., Peyre, E., Nguyen, L., 2019. Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat. Rev. Neurosci. 20, 318–329, http://dx.doi.org/10.1038/s41583-019-0148-y.

Squarzoni, P., Oller, G., Hoeffel, G., Pont-Lezica, L., Rostaing, P., Low, D., Bessis, A., Gin- houx, F., Garel, S., 2014. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279, http://dx.doi.org/10.1016/j.celrep.2014.07.042.

Takagi, H., Fukaya, T., Eizumi, K., Sato, Y., Sato, Kaori, Shibazaki, A., Otsuka, H., Hijikata, A., Watanabe, T., Ohara, O., Kaisho, T., Malissen, B., Sato, Katsuaki, 2011. Plasmacytoid dendritic cells are crucial for the initiation of inflamma- tion and t cell immunity in vivo. Immunity 35, 958–971, http://dx.doi.org/10. 1016/j.immuni.2011.10.014.

Thion, M.S., Ginhoux, F., Garel, S., 2018. Microglia and early brain development: an intimate journey. Science (80-.) 362, 185–189, http://dx.doi.org/10.1126/ science.aat0474.

Ueno, M., Fujita, Y., Tanaka, T., Nakamura, Y., Kikuta, J., Ishii, M., Yamashita, T., 2013. Layer v cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551, http://dx.doi.org/10.1038/nn.3358.

Urbán, N., Guillemot, F., 2014. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front. Cell. Neurosci. 8, 1–19, http://dx.doi.org/10. 3389/fncel.2014.00396.

Utz, S.G., See, P., Mildenberger, W., Thion, M.S., Silvin, A., Lutz, M., Ingelfinger, F., Rayan, N.A., Lelios, I., Buttgereit, A., Asano, K., Prabhakar, S., Garel, S., Becher, B., Ginhoux, F., Greter, M., 2020. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181 (557–573), e18, http://dx.doi.org/10. 1016/j.cell.2020.03.021.

Van Hove, H., Martens, L., Scheyltjens, I., De Vlaminck, K., Pombo Antunes, A.R., De Prijck, S., Vandamme, N., De Schepper, S., Van Isterdael, G., Scott, C.L., Aerts, J., Berx, G., Boeckxstaens, G.E., Vandenbroucke, R.E., Vereecke, L., Moechars, D., Guilliams, M., Van Ginderachter, J.A., Saeys, Y., Movahedi, K., 2019. A single- cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035, http://dx.doi.org/10.1038/s41593-019-0393-4.

Ved, N., Curran, A., Ashcroft, F.M., Sparrow, D.B., 2019. Tamoxifen administration in pregnant mice can be deleterious to both mother and embryo. Lab. Anim. 53, 630–633, http://dx.doi.org/10.1177/0023677219856918.

Voehringer, D., Liang, H.-E., Locksley, R.M., 2008. Homeostasis and effector function of lymphopenia-induced “Memory-Like” T cells in constitutively T cell-depleted mice. J. Immunol. 180, 4742–4753, http://dx.doi.org/10.4049/jimmunol.180.7.4742.

Wlodarczyk, A., Holtman, I.R., Krueger, M., Yogev, N., Bruttger, J., Khorooshi, R., Benmamar-Badel, A., Boer-Bergsma, J.J., Martin, N.A., Karram, K., Kramer, I., Bod- deke, E.W., Waisman, A., Eggen, B.J., Owens, T., 2017. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308, http://dx.doi.org/10.15252/embj.201696056.

Yona, S., Kim, K.W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S., Guilliams, M., Misharin, A., Hume, D.A., Perlman, H., Malissen, B., Zelzer, E., Jung, S., 2013. Fate mapping reveals origins and dynamics of mono- cytes and tissue macrophages under homeostasis. Immunity 38, 79–91, http://dx.doi.org/10.1016/j.immuni.2012.12.001.

Zhang, J., Raper, A., Sugita, N., Hingorani, R., Salio, M., Palmowski, M.J., Cerundolo, V., Crocker, P.R., 2006. Characterization of Siglec-H as a novel endocytic recep- tor expressed on murine plasmacytoid dendritic cell precursors. Blood 107, 3600–3608, http://dx.doi.org/10.1182/blood-2005-09-3842.

参考文献をもっと見る