リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Decreased Lamin B1 Levels Affect Gene Positioning and Expression in Postmitotic Neurons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Decreased Lamin B1 Levels Affect Gene Positioning and Expression in Postmitotic Neurons

Noguchi, Azumi ノグチ, アズミ Ito, Kenji イトウ, ケンジ Uosaki, Yuichi ウオサキ, ユウイチ Ideta-Otsuka, Maky イデタ-オオツカ, Maky Igarashi, Katsuhide 五十嵐, 勝秀 イガラシ, カツヒデ Nakashima, Hideyuki 中嶋, 秀行 ナカシマ, ヒデユキ Kakizaki, Toshikazu 柿崎, 利和 カキザキ, トシカズ Kaneda, Ruri 金田, るり カネダ, ルリ Uosaki, Hideki 魚崎, 英毅 ウオサキ, ヒデキ Yanagawa, Yuchio 柳川, 右千夫 ヤナガワ, ユチオ Nakashima, Kinichi 中島, 欽一 ナカシマ, キンイチ Arakawa, Hirokazu 荒川, 浩一 アラカワ, ヒロカズ Takizawa, Takumi 滝沢, 琢己 タキザワ, タクミ 九州大学

2021.12

概要

Gene expression programs and concomitant chromatin regulation change dramatically during the maturation of postmitotic neurons. Subnuclear positioning of gene loci is relevant to transcriptional regul

この論文で使われている画像

参考文献

Arimura, N., Menager, C., Fukata, Y., Kaibuchi, K., 2004. Role of CRMP-2 in neuronal polarity. J

Neurobiol 58, 34-47.

Armstrong, D.D., 2001. Rett syndrome neuropathology review 2000. Brain Dev 23 Suppl 1, S7276.

Barton, L.J., Soshnev, A.A., Geyer, P.K., 2015. Networking in the nucleus: a spotlight on LEMdomain proteins. Curr Opin Cell Biol 34, 1-8.

Beckmann, A.M., Wilce, P.A., 1997. Egr transcription factors in the nervous system. Neurochem

Int 31, 477-510.

Belmont, A.S., 2014. Large-scale chromatin organization: the good, the surprising, and the still

perplexing. Curr Opin Cell Biol 26, 69-78.

Bickmore, W.A., 2013. The spatial organization of the human genome. Annu Rev Genomics Hum

Genet 14, 67-84.

Chang, L., Li, M., Shao, S., Li, C., Ai, S., Xue, B., Hou, Y., Zhang, Y., Li, R., Fan, X., He, A., Li, C.,

Sun, Y., 2020. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity

of chromatin architecture and dynamics in human cells. Protein Cell.

Coffinier, C., Jung, H.J., Nobumori, C., Chang, S., Tu, Y., Barnes, R.H., 2nd, Yoshinaga, Y., de

Jong, P.J., Vergnes, L., Reue, K., Fong, L.G., Young, S.G., 2011. Deficiencies in lamin B1 and

lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons.

Mol Biol Cell 22, 4683-4693.

Daigle, N., Beaudouin, J., Hartnell, L., Imreh, G., Hallberg, E., Lippincott-Schwartz, J.,

Ellenberg, J., 2001. Nuclear pore complexes form immobile networks and have a very low

turnover in live mammalian cells. J Cell Biol 154, 71-84.

Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D.K., Solimando, L., Goldman,

R.D., 2008. Nuclear lamins: major factors in the structural organization and function of the

nucleus and chromatin. Genes Dev 22, 832-853.

Dierssen, M., Ramakers, G.J., 2006. Dendritic pathology in mental retardation: from molecular

genetics to neurobiology. Genes Brain Behav 5 Suppl 2, 48-60.

Dittmer, T.A., Misteli, T., 2011. The lamin protein family. Genome Biol 12, 222.

Dotti, C.G., Sullivan, C.A., Banker, G.A., 1988. The establishment of polarity by hippocampal

neurons in culture. J Neurosci 8, 1454-1468.

Dou, Z., Xu, C., Donahue, G., Shimi, T., Pan, J.A., Zhu, J., Ivanov, A., Capell, B.C., Drake, A.M.,

Shah, P.P., Catanzaro, J.M., Ricketts, M.D., Lamark, T., Adam, S.A., Marmorstein, R., Zong, W.X.,

Johansen, T., Goldman, R.D., Adams, P.D., Berger, S.L., 2015. Autophagy mediates degradation of

nuclear lamina. Nature 527, 105-109.

Dreesen, O., Chojnowski, A., Ong, P.F., Zhao, T.Y., Common, J.E., Lunny, D., Lane, E.B., Lee, S.J.,

Vardy, L.A., Stewart, C.L., Colman, A., 2013. Lamin B1 fluctuations have differential effects on

cellular proliferation and senescence. J Cell Biol 200, 605-617.

25

Frank, C.L., Liu, F., Wijayatunge, R., Song, L., Biegler, M.T., Yang, M.G., Vockley, C.M., Safi, A.,

Gersbach, C.A., Crawford, G.E., West, A.E., 2015. Regulation of chromatin accessibility and Zic

binding at enhancers in the developing cerebellum. Nat Neurosci 18, 647-656.

Freund, A., Laberge, R.M., Demaria, M., Campisi, J., 2012. Lamin B1 loss is a senescenceassociated biomarker. Mol Biol Cell 23, 2066-2075.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier,

L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C.,

Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y., Zhang, J.,

2004. Bioconductor: open software development for computational biology and bioinformatics.

Genome Biol 5, R80.

Giacomini, C., Mahajani, S., Ruffilli, R., Marotta, R., Gasparini, L., 2016. Lamin B1 protein is

required for dendrite development in primary mouse cortical neurons. Mol Biol Cell 27, 35-47.

Gigante, C.M., Dibattista, M., Dong, F.N., Zheng, X., Yue, S., Young, S.G., Reisert, J., Zheng, Y.,

Zhao, H., 2017. Lamin B1 is required for mature neuron-specific gene expression during olfactory

sensory neuron differentiation. Nat Commun 8, 15098.

Graham, R.K., Ehrnhoefer, D.E., Hayden, M.R., 2011. Caspase-6 and neurodegeneration. Trends

Neurosci 34, 646-656.

Greer, P.L., Greenberg, M.E., 2008. From synapse to nucleus: Calcium-dependent gene

transcription in the control of synapse development and function. Neuron 59, 846-860.

Gruenbaum, Y., Foisner, R., 2015. Lamins: nuclear intermediate filament proteins with

fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84, 131164.

Hardingham, G.E., Arnold, F.J., Bading, H., 2001. Nuclear calcium signaling controls CREBmediated gene expression triggered by synaptic activity. Nat Neurosci 4, 261-267.

Harewood, L., Fraser, P., 2014. The impact of chromosomal rearrangements on regulation of gene

expression. Hum Mol Genet 23, R76-82.

Hutchison, C.J., 2014. B-type lamins in health and disease. Semin Cell Dev Biol 29, 158-163.

Jung, H.J., Nobumori, C., Goulbourne, C.N., Tu, Y., Lee, J.M., Tatar, A., Wu, D., Yoshinaga, Y., de

Jong, P.J., Coffinier, C., Fong, L.G., Young, S.G., 2013. Farnesylation of lamin B1 is important for

retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci U S A 110, E19231932.

Kaech, S., Banker, G., 2006. Culturing hippocampal neurons. Nat Protoc 1, 2406-2415.

Kanda, Y., 2013. Investigation of the freely available easy-to-use software 'EZR' for medical

statistics. Bone Marrow Transplant 48, 452-458.

Kanno, J., Aisaki, K., Igarashi, K., Nakatsu, N., Ono, A., Kodama, Y., Nagao, T., 2006. "Per cell"

normalization method for mRNA measurement by quantitative PCR and microarrays. BMC

Genomics 7, 64.

Kaufmann, W.E., Moser, H.W., 2000. Dendritic anomalies in disorders associated with mental

26

retardation. Cereb Cortex 10, 981-991.

Kaur, P., Karolina, D.S., Sepramaniam, S., Armugam, A., Jeyaseelan, K., 2014. Expression

profiling of RNA transcripts during neuronal maturation and ischemic injury. PLoS One 9,

e103525.

Kim, J.H., Roberts, D.S., Hu, Y., Lau, G.C., Brooks-Kayal, A.R., Farb, D.H., Russek, S.J., 2012.

Brain-derived neurotrophic factor uses CREB and Egr3 to regulate NMDA receptor levels in

cortical neurons. J Neurochem 120, 210-219.

Kind, J., van Steensel, B., 2010. Genome-nuclear lamina interactions and gene regulation. Curr

Opin Cell Biol 22, 320-325.

Kohwi, M., Lupton, J.R., Lai, S.L., Miller, M.R., Doe, C.Q., 2013. Developmentally regulated

subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell

152, 97-108.

Kosak, S.T., Skok, J.A., Medina, K.L., Riblet, R., Le Beau, M.M., Fisher, A.G., Singh, H., 2002.

Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development.

Science 296, 158-162.

Lemaitre, C., Bickmore, W.A., 2015. Chromatin at the nuclear periphery and the regulation of

genome functions. Histochem Cell Biol 144, 111-122.

Li, L., Carter, J., Gao, X., Whitehead, J., Tourtellotte, W.G., 2005. The neuroplasticity-associated

arc gene is a direct transcriptional target of early growth response (Egr) transcription factors.

Mol Cell Biol 25, 10286-10300.

Li, L., Yun, S.H., Keblesh, J., Trommer, B.L., Xiong, H., Radulovic, J., Tourtellotte, W.G., 2007.

Egr3, a synaptic activity regulated transcription factor that is essential for learning and memory.

Mol Cell Neurosci 35, 76-88.

Lin, S.T., Fu, Y.H., 2009. miR-23 regulation of lamin B1 is crucial for oligodendrocyte

development and myelination. Dis Model Mech 2, 178-188.

Lin, S.T., Ptacek, L.J., Fu, Y.H., 2011. Adult-onset autosomal dominant leukodystrophy: linking

nuclear envelope to myelin. J Neurosci 31, 1163-1166.

Mahajani, S., Giacomini, C., Marinaro, F., De Pietri Tonelli, D., Contestabile, A., Gasparini, L.,

2017. Lamin B1 levels modulate differentiation into neurons during embryonic corticogenesis. Sci

Rep 7, 4897.

Martou, G., De Boni, U., 2000. Nuclear topology of murine, cerebellar Purkinje neurons: changes

as a function of development. Exp Cell Res 256, 131-139.

Martou, G., Park, P.C., De Boni, U., 2002. Intranuclear relocation of the Plc beta3 sequence in

cerebellar purkinje neurons: temporal association with de novo expression during development.

Chromosoma 110, 542-549.

Matsuhashi, T., Hishiki, T., Zhou, H., Ono, T., Kaneda, R., Iso, T., Yamaguchi, A., Endo, J.,

Katsumata, Y., Atsushi, A., Yamamoto, T., Shirakawa, K., Yan, X., Shinmura, K., Suematsu, M.,

Fukuda, K., Sano, M., 2015. Activation of pyruvate dehydrogenase by dichloroacetate has the

27

potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol 82, 116-124.

McCall, M.N., Bolstad, B.M., Irizarry, R.A., 2010. Frozen robust multiarray analysis (fRMA).

Biostatistics 11, 242-253.

Misteli, T., 2013. The cell biology of genomes: bringing the double helix to life. Cell 152, 12091212.

Naetar, N., Ferraioli, S., Foisner, R., 2017. Lamins in the nuclear interior - life outside the

lamina. J Cell Sci 130, 2087-2096.

Nguyen, H.Q., Bosco, G., 2015. Gene Positioning Effects on Expression in Eukaryotes. Annu Rev

Genet 49, 627-646.

O'Donovan, K.J., Tourtellotte, W.G., Millbrandt, J., Baraban, J.M., 1999. The EGR family of

transcription-regulatory factors: progress at the interface of molecular and systems neuroscience.

Trends Neurosci 22, 167-173.

Padeken, J., Heun, P., 2014. Nucleolus and nuclear periphery: velcro for heterochromatin. Curr

Opin Cell Biol 28, 54-60.

Peric-Hupkes, D., Meuleman, W., Pagie, L., Bruggeman, S.W., Solovei, I., Brugman, W., Graf, S.,

Flicek, P., Kerkhoven, R.M., van Lohuizen, M., Reinders, M., Wessels, L., van Steensel, B., 2010.

Molecular maps of the reorganization of genome-nuclear lamina interactions during

differentiation. Mol Cell 38, 603-613.

Rao, L., Perez, D., White, E., 1996. Lamin proteolysis facilitates nuclear events during apoptosis.

J Cell Biol 135, 1441-1455.

Reddy, K.L., Zullo, J.M., Bertolino, E., Singh, H., 2008. Transcriptional repression mediated by

repositioning of genes to the nuclear lamina. Nature 452, 243-247.

Sadaie, M., Salama, R., Carroll, T., Tomimatsu, K., Chandra, T., Young, A.R., Narita, M., PerezMancera, P.A., Bennett, D.C., Chong, H., Kimura, H., Narita, M., 2013. Redistribution of the

Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF

formation during senescence. Genes Dev 27, 1800-1808.

Sanosaka, T., Namihira, M., Asano, H., Kohyama, J., Aisaki, K., Igarashi, K., Kanno, J.,

Nakashima, K., 2008. Identification of genes that restrict astrocyte differentiation of

midgestational neural precursor cells. Neuroscience 155, 780-788.

Shah, P.P., Donahue, G., Otte, G.L., Capell, B.C., Nelson, D.M., Cao, K., Aggarwala, V.,

Cruickshanks, H.A., Rai, T.S., McBryan, T., Gregory, B.D., Adams, P.D., Berger, S.L., 2013. Lamin

B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin

landscape. Genes Dev 27, 1787-1799.

Shimi, T., Butin-Israeli, V., Adam, S.A., Hamanaka, R.B., Goldman, A.E., Lucas, C.A., Shumaker,

D.K., Kosak, S.T., Chandel, N.S., Goldman, R.D., 2011. The role of nuclear lamin B1 in cell

proliferation and senescence. Genes Dev 25, 2579-2593.

Slee, E.A., Adrain, C., Martin, S.J., 2001. Executioner caspase-3, -6, and -7 perform distinct, nonredundant roles during the demolition phase of apoptosis. J Biol Chem 276, 7320-7326.

28

Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M., Cohen, T.V., Devys,

D., Foisner, R., Peichl, L., Herrmann, H., Blum, H., Engelkamp, D., Stewart, C.L., Leonhardt, H.,

Joffe, B., 2013. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely

regulate differentiation. Cell 152, 584-598.

Tabares-Seisdedos, R., Rubenstein, J.L., 2009. Chromosome 8p as a potential hub for

developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer.

Mol Psychiatry 14, 563-589.

Takano, T., Xu, C., Funahashi, Y., Namba, T., Kaibuchi, K., 2015. Neuronal polarization.

Development 142, 2088-2093.

Takizawa, T., Gudla, P.R., Guo, L., Lockett, S., Misteli, T., 2008a. Allele-specific nuclear

positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22, 489-498.

Takizawa, T., Meaburn, K.J., Misteli, T., 2008b. The meaning of gene positioning. Cell 135, 9-13.

Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., Fujita, N.,

Nakao, M., Taga, T., 2001. DNA methylation is a critical cell-intrinsic determinant of astrocyte

differentiation in the fetal brain. Dev Cell 1, 749-758.

Takizawa, T., Ochiai, W., Nakashima, K., Taga, T., 2003. Enhanced gene activation by Notch and

BMP signaling cross-talk. Nucleic Acids Res 31, 5723-5731.

Tamamaki, N., Yanagawa, Y., Tomioka, R., Miyazaki, J., Obata, K., Kaneko, T., 2003. Green

fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin

in the GAD67-GFP knock-in mouse. J Comp Neurol 467, 60-79.

Thakurela, S., Sahu, S.K., Garding, A., Tiwari, V.K., 2015. Dynamics and function of distal

regulatory elements during neurogenesis and neuroplasticity. Genome Res 25, 1309-1324.

Uosaki, H., Cahan, P., Lee, D.I., Wang, S., Miyamoto, M., Fernandez, L., Kass, D.A., Kwon, C.,

2015. Transcriptional Landscape of Cardiomyocyte Maturation. Cell Rep 13, 1705-1716.

Uosaki, H., Taguchi, Y.H., 2016. Comparative Gene Expression Analysis of Mouse and Human

Cardiac Maturation. Genomics Proteomics Bioinformatics 14, 207-215.

Uribe, V., Wong, B.K., Graham, R.K., Cusack, C.L., Skotte, N.H., Pouladi, M.A., Xie, Y., Feinberg,

K., Ou, Y., Ouyang, Y., Deng, Y., Franciosi, S., Bissada, N., Spreeuw, A., Zhang, W., Ehrnhoefer,

D.E., Vaid, K., Miller, F.D., Deshmukh, M., Howland, D., Hayden, M.R., 2012. Rescue from

excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and

neuroanatomical alterations in caspase-6-deficient mice. Hum Mol Genet 21, 1954-1967.

van Steensel, B., Belmont, A.S., 2017. Lamina-Associated Domains: Links with Chromosome

Architecture, Heterochromatin, and Gene Repression. Cell 169, 780-791.

Ventura, A., Meissner, A., Dillon, C.P., McManus, M., Sharp, P.A., Van Parijs, L., Jaenisch, R.,

Jacks, T., 2004. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad

Sci U S A 101, 10380-10385.

Walczak, A., Szczepankiewicz, A.A., Ruszczycki, B., Magalska, A., Zamlynska, K., Dzwonek, J.,

Wilczek, E., Zybura-Broda, K., Rylski, M., Malinowska, M., Dabrowski, M., Szczepinska, T.,

29

Pawlowski, K., Pyskaty, M., Wlodarczyk, J., Szczerbal, I., Switonski, M., Cremer, M., Wilczynski,

G.M., 2013. Novel higher-order epigenetic regulation of the Bdnf gene upon seizures. J Neurosci

33, 2507-2511.

West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu,

M.A., Tao, X., Greenberg, M.E., 2001. Calcium regulation of neuronal gene expression. Proc Natl

Acad Sci U S A 98, 11024-11031.

Williams, R.R., Azuara, V., Perry, P., Sauer, S., Dvorkina, M., Jorgensen, H., Roix, J., McQueen,

P., Misteli, T., Merkenschlager, M., Fisher, A.G., 2006. Neural induction promotes large-scale

chromatin reorganisation of the Mash1 locus. J Cell Sci 119, 132-140.

Wright, W.E., Shay, J.W., 2006. Inexpensive low-oxygen incubators. Nat Protoc 1, 2088-2090.

Yamada, K., Gerber, D.J., Iwayama, Y., Ohnishi, T., Ohba, H., Toyota, T., Aruga, J., Minabe, Y.,

Tonegawa, S., Yoshikawa, T., 2007. Genetic analysis of the calcineurin pathway identifies

members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in

schizophrenia. Proc Natl Acad Sci U S A 104, 2815-2820.

Yasui, T., Uezono, N., Nakashima, H., Noguchi, H., Matsuda, T., Noda-Andoh, T., Okano, H.,

Nakashima, K., 2017. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on

Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports 8, 1743-1756.

30

Figure legends

Fig. 1. Identification of a gene locus enriched with genes that are upregulated during neuronal

maturation. (A) Gene clustering analysis of genes transcribed in hippocampal neurons cultured

for 1, 4, and 10 days. (B) Gene density of all genes and maturation-dependent genes (>twofold increase from day 1 to day 10 of culture) in each chromosome. (C) Genomic structure of

the 14qD2 locus. Genes found to be upregulated during maturation by microarray are depicted

in red circles and others are shown in gray circles. BAC clones used for DNA FISH are

indicated in the lower bars. (D) RT-qPCR analysis of mRNA expression of maturationdependent genes (red) and genes without changes during maturation (gray). Data were

normalized to mRNA levels of each gene at day 1 of in-vitro culture (1 DIV).

Fig. 2. Subnuclear positioning of 14qD2L in hippocampal neurons and brain sections. (A)

Representative images of DNA FISH for 14qD2L (red) and lamin B1 immunostaining (green)

at 1 DIV and 21 DIV of hippocampal neurons. Nuclei were counterstained with DAPI. Scale

bars: 5 μm. (B) Percentage alleles of 14qD2L at the nuclear periphery in hippocampal neurons

cultured at the indicated DIV. Error bars indicate the mean ± SD of 4–6 biological replicates (n

= 42–68 alleles). Statistical analysis was conducted with Kruskal–Wallis with post-hoc Steel’s

test. *p < 0.05 (C) Representative images of immunostaining for DAPI (blue), Tuj1 (red), GFP

(green), and GFAP (cyan) at 1, 4, and 10 DIV of culture of hippocampal neurons prepared from

GAD67-GFP knock-in mice. Scale bar: 5 μm. (D) Percentage of GFP-positive and -negative

neurons, and glia in hippocampal neuron culture prepared from GAD67-GFP knock-in mice.

(E) Representative images of DNA FISH for 14qD2L (red) and lamin B1 immunostaining

(blue) and GFP immunostaining (green) in GAD67-negative and -positive hippocampal

neurons cultured for 10 days prepared from GAD67-GFP knock-in mice. Scale bars: 5 μm. (F)

Percentage 14qD2 alleles at the nuclear periphery in GAD67-negative and -positive

31

hippocampal neurons cultured for 10 DIV prepared from GAD67-GFP knock-in mice. Error

bars indicate the mean ± SD of three biological replicates (n = 134–164). Statistical analysis

was conducted with Mann-Whitney U test. (G) Images of DNA FISH for 14qD2L in frozen

sections of the hippocampus from mice at postnatal day 1 (P1) and in adult mice. (H)

Percentage 14qD2 alleles at the nuclear periphery of P1 and adult hippocampi. Data are the

mean ± SD of 5–6 biological replicates (n = 42–68) and were analyzed with Mann-Whitney U

test. **p < 0.01

Fig. 3. Subnuclear positioning of 14qD2L in non-neuronal cells and human cell line. (A)

Representative images of DNA FISH for 14qD2L (red) and lamin B1 immunostaining (green)

in murine primary cardiomyocytes at 2, 3, 6, and 8 DIV. Nuclei were counterstained with DAPI.

Scale bar: 5 μm. (B) Percentage 14qD2 alleles at the nuclear periphery in primary

cardiomyocytes cultured for the indicated DIV. Data are presented as the mean ± SD from three

experiments (n = 98–176 alleles). (C) Egr3 expression in brains and hearts as assessed by metamicroarray analysis. In total, 429 and 222 microarray datasets for mouse brain and heart were

obtained from Gene Expression Omnibus (GEO), respectively, and were classified as early

embryo (18 brain, 17 heart), mid embryo (38 brain, 39 heart), late embryo (12 brain, 29 heart),

neonate (32 brain, 16 heart), and adult (329 brain, 121 heart). Data are shown as log signal

intensity. (D) Representative images of DNA FISH for 14qD2L (red) and lamin B1

immunostaining (green) in neurons differentiated from a human iPS cell line for 7 or 14 days.

Nuclei were counterstained with DAPI. (E) Percentage 14qD2 alleles at the nuclear periphery

in human iPS cell line-derived neurons after induction for the indicated periods. Data are

presented as the mean ± SD of six experiments (n = 42–84 alleles). Statistical analysis was

conducted with Mann-Whitney U test. *p < 0.05

32

Fig. 4. Expression of lamin B1 in hippocampal neurons and the brain. (A) RT-qPCR analysis

of nuclear lamins and Lbr in hippocampal neurons. (B) Western blot analysis of lamin B1

expression with antibody targeting the C-terminus or N-terminus of lamin B1 in cultured

hippocampal neurons. The arrowheads and arrow indicate intact and cleaved lamin B1,

respectively. (C, D) Western blot analysis of lamin B1 in the brains of mice at embryonic day

17 (E17) and adult mice using antibody targeting the C terminus (C) or N terminus (D) of lamin

B1.

Fig. 5. Lentiviral expression of lamin B1 in hippocampal neurons. (A, C) Representative

images of DNA FISH for 14qD2L (A) or Bdnf (B) (in red) and immunostaining of lamin B1

(blue) and GFP (green) in GFP-lamin B1 or GFP control cells. (B, D) Percentage alleles at the

nuclear periphery. Error bars indicate means ± SDs of 5–6 biological replicates (n = 55–72).

Data were analyzed with a Mann-Whitney U test. *p < 0.05 (E) Representative images of DNA

FISH for 14qD2L (red) and immunostaining of lamin B1 (blue) and GFP (green) in cells

infected with pCSII mock, flag-lamin B1, flag-ΔN-lamin B1, or flag-ΔC-lamin B1. (F)

Percentage 14qD2 alleles at the nuclear periphery of CSII mock, flag-lamin B1, flag-ΔN-lamin

B1, and flag-ΔC-lamin B. Error bars indicate means ± SDs of 3–6 biological replicates (n =

61–78). Data were analyzed by Kruskal-Wallis test with post-hoc Steel’s test. *p < 0.05 (G)

mRNA expression levels of Egr3 and Bdnf after depolarization in GFP control or GFP-lamin

B1 cells stimulated with 5 or 25 μM bicuculline for 1 h. Data are presented as fold increase

compared to GFP control without bicuculline. Error bars indicate means ± SDs of 6 replicates.

Data were analyzed with ANOVA and post-hoc Tukey’s test. **p < 0.01 (H) Percentage alleles

of Egr3 or Bdnf at the nuclear periphery before and after depolarization with 25 μM bicuculline

for 1 h. Error bars indicate means ± SDs of 6 biological replicates (n = 42–48). Statistical

analysis was conducted with Mann-Whitney U test.

33

Table 1. Loci enriched with maturation-dependent genes

Chromosome Size (Mbp) All genes Maturation-dependent genes %

0.9

35

10

29

1.9

127

13

10

1.2

56

10

18

123

15

12

11

1.6

102

12

12

14

1.4

33

11

33

16

1.5

46

10

22

34

35

36

37

38

39

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る