リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification and Functional Characterization of The Neuronal Pathway Regulating Insect Steroid Hormone Biosynthesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification and Functional Characterization of The Neuronal Pathway Regulating Insect Steroid Hormone Biosynthesis

井村, 英輔 筑波大学 DOI:10.15068/0002000674

2021.07.21

概要

Steroid hormones are key players for many aspects of development, growth, and reproduction in multicellular organisms. In insects, the principal steroid hormones, ecdysteroids, coordinate growth and maturation. In Drosophila, a peak in ecdysteroid concentration triggers developmental transitions culminating with molting and metamorphosis. Moreover, recent studies shed light on the basal levels of ecdysteroids, which negatively affect body growth prior to maturation. Ecdysteroid biosynthesis in the prothoracic gland (PG) is affected by several signals, especially neuronal signals, and controls the proper timing of growth and maturation. The prothoracicotropic hormone (PTTH)-producing neurons and serotonergic SE0PG neurons innervate the PG, regulating ecdysteroid biosynthesis. However, only these two types of neurons may not account for the precise timing of basal and peak of ecdysteroid biosynthesis in response to the complex combination of environmental stimuli. Consequently, I hypothesized that other neuronal regulatory systems must exist in the PG. Based on this hypothesis, I aimed to identify and characterize novel PG-innervating neurons.

Using the FlyLight database, I found several types of PG-innervating neurons that have not yet been fully characterized. Among these neurons, I focused on three pairs of Corazonin (Crz)-producing neurons, which contact PTTH neurons and PG cells. Inhibition of Crz neuronal activity increased pupal size, whereas it had little effect on pupariation timing. This phenotype resulted from enhanced growth and a delay in basal ecdysteroid elevation during the mid-third instar larval (L3) stage. Silencing of Crz in Crz neurons resulted in increased levels of bantam microRNA, which represses basal ecdysteroid biosynthesis.

To examine whether PG cells receive Crz, I visualized the expression of CrzR. Unexpectedly, CrzR was expressed in PTTH neurons rather than PG cells. Silencing of CrzR in PTTH neurons exhibited increased pupal size, phenocopying the inhibition of Crz neurons. Interestingly, Crz receptor (CrzR) expression in PTTH neurons was higher during the mid-L3 stage than during the late-L3 stage. When Crz neurons were optogenetically activated, a strong calcium response was observed in PTTH neurons in the mid-, but not the late-L3 stage larvae brains. These data suggest that the Crz-PTTH neuronal axis modulates basal, but not peak ecdysteroid biosynthesis. Most significantly, this study uncovered a regulatory neuronal system affecting ecdysteroid biosynthesis in a developmental stage-specific manner.

この論文で使われている画像

参考文献

1. Miller, W.L., and Auchus, R.J. (2011). The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocrine Reviews 32, 81– 151.

2. Danielsen, E.T., Moeller, M.E., Dorry, E., Komura-Kawa, T., Fujimoto, Y., Troelsen, J.T., Herder, R., O’Connor, M.B., Niwa, R., and Rewitz, K.F. (2014). Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by Ventral veins lacking and Knirps. PLoS Genetics 10, e1004343.

3. Imura, E., Shimada-Niwa, Y., and Niwa, R. (2016). 環境に応じて昆虫の発育を司るステロイドホルモンの生合成調節メカニズム. 生物科学 67, 177–183.

4. Niwa, R., and Niwa, Y.S. (2014). Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Bioscience, Biotechnology, and Biochemistry 78, 1283– 1292.

5. Gilbert, L.I., Rybczynski, R., and Warren, J.T. (2002). Control and biochemical nature of the ecdysteroidogenic pathway. Annual Review of Entomology 47, 883–916.

6. Moeller, M.E., Danielsen, E.T., Herder, R., O’Connor, M.B., and Rewitz, K.F. (2013). Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila. Development 140, 4730–4739.

7. Boulan, L., Milán, M., and Léopold, P. (2015). The Systemic Control of Growth. Cold Spring Harbor perspectives in biology 7, a019117.

8. Colombani, J., Bianchini, L., Layalle, S., Pondeville, E., Dauphin-Villemant, C., Antoniewski, C., Carré, C., Noselli, S., and Léopold, P. (2005). Antagonistic Actions of Ecdysone and Insulins Determine Final Size in Drosophila. Science 310, 667–670.

9. Delanoue, R., Slaidina, M., and Léopold, P. (2010). The Steroid Hormone Ecdysone Controls Systemic Growth by Repressing dMyc Function in Drosophila Fat Cells. Developmental Cell 18, 1012–1021.

10. Rewitz, K.F., Yamanaka, N., and O’Connor, M.B. (2013). Developmental checkpoints and feedback circuits time insect maturation. Current topics in developmental biology 103, 1–33.

11. Boulan, L., Martín, D., and Milán, M. (2013). bantam miRNA promotes systemic growth by connecting insulin signaling and ecdysone production. Current biology : CB 23, 473– 478.

12. Moeller, M.E., Nagy, S., Gerlach, S.U., Soegaard, K.C., Danielsen, E.T., Texada, M.J., and Rewitz, K.F. (2017). Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone. Current Biology 27, 1652-1659.e4.

13. Niwa, Y.S., and Niwa, R. (2014). Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster. Genes & Genetic Systems 89, 27– 34.

14. Yamanaka, N., Rewitz, K.F., and O’Connor, M.B. (2013). Ecdysone control of developmental transitions: lessons from Drosophila research. Annual Review of Entomology 58, 497–516.

15. Siegmund, T., and Korge, G. (2001). Innervation of the ring gland of Drosophila melanogaster. Journal of Comparative Neurology 431, 481–491.

16. McBrayer, Z., Ono, H., Shimell, M., Parvy, J.-P., Beckstead, R.B., Warren, J.T., Thummel, C.S., Dauphin-Villemant, C., Gilbert, L.I., and O’Connor, M.B. (2007). Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Developmental cell 13, 857–71.

17. Shimada-Niwa, Y., and Niwa, R. (2014). Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila. Nature Communications 5, 5778.

18. Yokoyama, T. (1956). The morphology and innervation of the prothoracic gland in the silkworm, Bombyx mori. J. Sericult. Sci. Jpn. 25, 87–94.

19. Yamanaka, N., Zitnan, D., Kim, Y.-J., Adams, M.E., Hua, Y.-J., Suzuki, Y., Suzuki, M., Suzuki, A., Satake, H., Mizoguchi, A., et al. (2006). Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proceedings of the National Academy of Sciences of the United States of America 103, 8622–7.

20. Okajima, A., Kumagai, K., and Watanabe, N. (1989). The involvement of interoceptive chemosensory activity in the nervous regulation of the prothoracic gland in a moth,Mamestra brassicae. Zoological Science 6, p859-866.

21. Richter, K., and Böhm, G.-A. (1997). The molting gland of the cockroach Periplaneta americana: secretory activity and its regulation. General Pharmacology: The Vascular System 29, 17–21.

22. Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., Scully, A., Carlson, J.W., Wan, K.H., Laverty, T.R., et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105, 9715–9720.

23. Jenett, A., Rubin, G.M., Ngo, T.-T.B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro, A., Hall, D., Jeter, J., et al. (2012). A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Reports 2, 991–1001.

24. Li, H.-H., Kroll, J.R., Lennox, S.M., Ogundeyi, O., Jeter, J., Depasquale, G., and Truman,J.W. (2014). A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Reports 8, 897–908.

25. Struhl, G., and Basler, K. (1993). Organizing activity of wingless protein in Drosophila. Cell 72, 527–540.

26. Germani, F., Bergantinos, C., and Johnston, L.A. (2018). Mosaic analysis in drosophila. Genetics 208, 473–490.

27. Park, D., Veenstra, J.A., Park, J.H., and Taghert, P.H. (2008). Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In. PLoS ONE 3, e1896.

28. Predel, R., Neupert, S., Russell, W.K., and Scheibner, O. (2007). Corazonin in insects. Peptides 28, 3–10.

29. Choi, Y.J., Lee, G., Hall, J.C., and Park, J.H. (2005). Comparative analysis of Corazonin- encoding genes (Crz’s) in Drosophila species and functional insights into Crz-expressing neurons. The Journal of comparative neurology 482, 372–385.

30. Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986.

31. Schneider-Mizell, C.M., Gerhard, S., Longair, M., Kazimiers, T., Li, F., Zwart, M.F., Champion, A., Midgley, F.M., Fetter, R.D., Saalfeld, S., et al. (2016). Quantitative neuroanatomy for connectomics in Drosophila. eLife 5.

32. Gerhard, S., Andrade, I., Fetter, R.D., Cardona, A., and Schneider-Mizell, C.M. (2017). Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics. eLife 6.

33. van den Pol, A.N. (2012). Neuropeptide Transmission in Brain Circuits. Neuron 76, 98– 115.

34. Schlegel, P., Texada, M.J., Miroschnikow, A., Schoofs, A., Hückesfeld, S., Peters, M., Schneider-Mizell, C.M., Lacin, H., Li, F., Fetter, R.D., et al. (2016). Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife 5.

35. Tayler, T.D., Pacheco, D.A., Hergarden, A.C., Murthy, M., and Anderson, D.J. (2012). A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 109, 20697–20702.

36. Baines, R.A., Uhler, J.P., Thompson, A., Sweeney, S.T., and Bate, M. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. The Journal of neuroscience 21, 1523–1531.

37. Paradis, S., Sweeney, S.T., and Davis, G.W. (2001). Homeostatic Control of Presynaptic Release Is Triggered by Postsynaptic Membrane Depolarization. Neuron 30, 737–749.

38. Lavrynenko, O., Rodenfels, J., Carvalho, M., Dye, N.A., Lafont, R., Eaton, S., and Shevchenko, A. (2015). The ecdysteroidome of Drosophila: influence of diet and development. Development 142, 3758–3768.

39. Blais, C., Blasco, T., Maria, A., Dauphin-Villemant, C., and Lafont, R. (2010). Characterization of ecdysteroids in Drosophila melanogaster by enzyme immunoassay and nano-liquid chromatography–tandem mass spectrometry. Journal of Chromatography B 878, 925–932.

40. Hikiba, J., Ogihara, M.H., Iga, M., Saito, K., Fujimoto, Y., Suzuki, M., and Kataoka, H. (2013). Simultaneous quantification of individual intermediate steroids in silkworm ecdysone biosynthesis by liquid chromatography–tandem mass spectrometry with multiple reaction monitoring. Journal of Chromatography B 915–916, 52–56.

41. Li, Y., Warren, J.T., Boysen, G., Gilbert, L.I., Gold, A., Sangaiah, R., Ball, L.M., and Swenberg, J.A. (2006). Profiling of ecdysteroids in complex biological samples using liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry 20, 185–192.

42. Miyashita, M., Matsushita, K., Nakamura, S., Akahane, S., Nakagawa, Y., and Miyagawa, H. (2011). LC/MS/MS identification of 20-hydroxyecdysone in a scorpion (Liocheles australasiae) and its binding affinity to in vitro-translated molting hormone receptors. Insect Biochemistry and Molecular Biology 41, 932–937.

43. Diao, F., and White, B.H. (2012). A novel approach for directing transgene expression in Drosophila: T2A-Gal4 in-frame fusion. Genetics 190, 1139–1144.

44. Colombani, J., Andersen, D.S., Boulan, L., Boone, E., Romero, N., Virolle, V., Texada, M., and Léopold, P. (2015). Drosophila Lgr3 Couples Organ Growth with Maturation and Ensures Developmental Stability. Current Biology 25, 2723–2729.

45. Deveci, D., Martin, F.A., Leopold, P., and Romero, N.M. (2019). AstA Signaling Functions as an Evolutionary Conserved Mechanism Timing Juvenile to Adult Transition. Current Biology 29, 813-822.e4.

46. Vallejo, D.M., Juarez-Carreño, S., Bolivar, J., Morante, J., and Dominguez, M. (2015). A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science 350, aac6767.

47. Garelli, A., Heredia, F., Casimiro, A.P., Macedo, A., Nunes, C., Garcez, M., Dias, A.R.M., Volonte, Y.A., Uhlmann, T., Caparros, E., et al. (2015). Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nature Communications 6, 8732.

48. Jaszczak, J.S., Wolpe, J.B., Bhandari, R., Jaszczak, R.G., and Halme, A. (2016). Growth Coordination During Drosophila melanogaster Imaginal Disc Regeneration Is Mediated by Signaling Through the Relaxin Receptor Lgr3 in the Prothoracic Gland. Genetics, genetics.116.193706.

49. Pan, X., and O’Connor, M.B. (2019). Developmental Maturation: Drosophila AstA Signaling Provides a Kiss to Grow Up. Current biology : CB 29, R161–R164.

50. Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300.

51. Roch, G.J., Busby, E.R., and Sherwood, N.M. (2011). Evolution of GnRH: Diving deeper. General and Comparative Endocrinology 171, 1–16.

52. Hou, Q.L., Jiang, H.B., Gui, S.H., Chen, E.H., Wei, D.D., Li, H.M., Wang, J.J., and Smagghe, G. (2017). A role of corazonin receptor in larval-pupal transition and pupariation in the oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Frontiers in Physiology 8, 77.

53. Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., et al. (2014). Independent optical excitation of distinct neural populations. Nature Methods 11, 338.

54. Han, K.A., Millar, N.S., and Davis, R.L. (1998). A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. The Journal of neuroscience 18, 3650–3658.

55. Roeder, T. (1999). Octopamine in invertebrates. Progress in Neurobiology 59, 533–561.

56. Roeder, T. (2005). Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology 50, 447–477.

57. Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H.J., Blenau, W., and Broeck, J. Vanden (2010). The role of octopamine in locusts and other arthropods. Journal of Insect Physiology 56, 854–867.

58. Cole, S.H., Carney, G.E., McClung, C.A., Willard, S.S., Taylor, B.J., and Hirsh, J. (2005). Two Functional but Noncomplementing Drosophila Tyrosine Decarboxylase Genes. Journal of Biological Chemistry 280, 14948–14955.

59. Kendroud, S., Bohra, A.A., Kuert, P.A., Nguyen, B., Guillermin, O., Sprecher, S.G., Reichert, H., VijayRaghavan, K., and Hartenstein, V. (2018). Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments. Journal of Comparative Neurology 526, 33–58.

60. Monastirioti, M., Linn, C.E., and White, K. (1996). Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. The Journal of neuroscience 16, 3900–3911.

61. Danielsen, E.T., Moeller, M.E., and Rewitz, K.F. (2013). Nutrient signaling and developmental timing of maturation. Current topics in developmental biology 105, 37–67.

62. Agrawal, N., Delanoue, R., Mauri, A., Basco, D., Pasco, M., Thorens, B., and Léopold, P. (2016). The Drosophila TNF Eiger Is an Adipokine that Acts on Insulin-Producing Cells to Mediate Nutrient Response. Cell Metabolism 23, 675–684.

63. Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., and Léopold, P. (2003). A Nutrient Sensor Mechanism Controls Drosophila Growth. Cell 114, 739–749.

64. Delanoue, R., Meschi, E., Agrawal, N., Mauri, A., Tsatskis, Y., McNeill, H., and Léopold,P. (2016). Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 353, 1553–1556.

65. Koyama, T., and Mirth, C.K. (2016). Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation. PLOS Biology 14, e1002392.

66. Rajan, A., and Perrimon, N. (2012). Drosophila Cytokine Unpaired 2 Regulates Physiological Homeostasis by Remotely Controlling Insulin Secretion. Cell 151, 123– 137.

67. Sano, H., Nakamura, A., Texada, M.J., Truman, J.W., Ishimoto, H., Kamikouchi, A., Nibu, Y., Kume, K., Ida, T., and Kojima, M. (2015). The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster. PLOS Genetics 11, e1005209.

68. Singh, R.N. (1997). Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Microscopy research and technique 39, 547–63.

69. Megha, Wegener, C., and Hasan, G. (2019). ER-Ca2+ sensor STIM regulates neuropeptides required for development under nutrient restriction in Drosophila. PLOS ONE 14, e0219719.

70. Nässel, D.R., Enell, L.E., Santos, J.G., Wegener, C., and Johard, H.A.D. (2008). A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC neuroscience 9, 90.

71. Ellison, P.T., Reiches, M.W., Shattuck-Faegre, H., Breakey, A., Konecna, M., Urlacher, S., and Wobber, V. (2012). Puberty as a life history transition. Annals of Human Biology 39, 352–360.

72. Plant, T.M. (2015). Neuroendocrine control of the onset of puberty. Frontiers in Neuroendocrinology 38, 73–88.

73. Navarro, V.M., and Tena-Sempere, M. (2012). Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nature Reviews Endocrinology 8, 40–53.

74. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R.P., and Tena-Sempere, M. (2012). Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiological Reviews 92, 1235–1316.

75. Roa, J., Aguilar, E., Dieguez, C., Pinilla, L., and Tena-Sempere, M. (2008). New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Frontiers in Neuroendocrinology 29, 48–69.

76. Tena-Sempere, M. (2008). Timeline: the role of kisspeptins in reproductive biology. Nature Medicine 14, 1196–1196.

77. Herbison, A.E. (2016). Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nature Reviews Endocrinology 12, 452–466.

78. Ojeda, S.R., and Skinner, M.K. (2006). Puberty in the Rat. Knobil and Neill’s Physiology of Reproduction 2, 2061–2126.

79. Zandawala, M., Tian, S., and Elphick, M.R. (2018). The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems. General and Comparative Endocrinology 264, 64–77.

80. Rulifson, E.J., Kim, S.K., and Nusse, R. (2002). Ablation of insulin-producing neurons in files: Growth and diabetic phenotypes. Science 296, 1118–1120.

81. Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D., and Strausfeld, N.J. (1998). The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learning & memory 5, 52– 77.

82. Sha, K., Choi, S.-H., Im, J., Lee, G.G., Loeffler, F., and Park, J.H. (2014). Regulation of Ethanol-Related Behavior and Ethanol Metabolism by the Corazonin Neurons and Corazonin Receptor in Drosophila melanogaster. PLoS ONE 9, e87062.

83. Imura, E., Yoshinari, Y., Shimada-Niwa, Y., and Niwa, R. (2017). Protocols for visualizing steroidogenic organs and their interactive organs with immunostaining in the fruit fly drosophila melanogaster. Journal of Visualized Experiments, e55519.

84. Veenstra, J.A. (1991). Presence of corazonin in three insect species, and isolation and identification of [His7]corazonin from Schistocerca americana. Peptides 12, 1285–1289.

85. Yamanaka, N., Romero, N.M., Martin, F.A., Rewitz, K.F., Sun, M., O’Connor, M.B., and Léopold, P. (2013). Neuroendocrine control of Drosophila larval light preference. Science 341, 1113–1116.

86. Ohyama, T., Schneider-Mizell, C.M., Fetter, R.D., Aleman, J.V., Franconville, R., Rivera- Alba, M., Mensh, B.D., Branson, K.M., Simpson, J.H., Truman, J.W., et al. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633– 639.

87. Saalfeld, S., Cardona, A., Hartenstein, V., and Tomancak, P. (2009). CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics 25, 1984–1986.

88. Abràmoff, M.D., Magalhães, P.J., and Ram, S.J. (2004). Image Processing with ImageJ. Biophotonics Int. 11, 36–42.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る