リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms of DNA damage induced by morin, an inhibitor of amyloid β-peptide aggregation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms of DNA damage induced by morin, an inhibitor of amyloid β-peptide aggregation

Mori Yurie 三重大学

2020.06.09

概要

Morin is a potential inhibitor of amyloid β-peptide aggregation. This aggregation is involved in the pathogenesis of Alzheimer’s disease. Meanwhile, morin has been found to be mutagenic and exhibits peroxidation of membrane lipids concurrent with DNA strand breaks in the presence of metal ions. To clarify a molecular mechanism of morin-induced DNA damage, we examined the DNA damage and its site specificity on 32P-5’-end-labeled human DNA fragments treated with morin plus Cu(II). The formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, was also determined in calf thymus DNA treated with morin plus Cu(II). Morin-induced DNA strand breaks and base modification in the presence of Cu(II) were dose dependent. Morin plus Cu(II) caused piperidine-labile lesions preferentially at thymine and guanine residues. The DNA damage was inhibited by methional, catalase, and Cu(I)-chelator bathocuproine. The typical •OH scavengers ethanol, mannitol, and sodium formate showed no inhibitory effect on DNA damage induced by morin plus Cu(II). When superoxide dismutase was added to the solution, DNA damage was not inhibited. In addition, morin plus Cu(II) increased 8-oxodG formation in calf thymus DNA fragments. We conclude that morin undergoes autoxidation in the presence of Cu(II) via a Cu(I)/Cu(II) redox cycle and H2O2 generation to produce Cu(I)-hydroperoxide, which causes oxidative DNA damage.

参考文献

1.

Lee J, Jin H, Lee WS, et al. Morin, a Flavonoid from Moraceae, Inhibits Cancer Cell

Adhesion to Endothelial Cells and EMT by Downregulating VCAM1 and Ncadherin.

Asian Pac J Cancer Prev. 2016;17(7):3071-5. PubMed PMID: 27509931.

2.

Li G, Lu G, Qi Z, et al. Morin Attenuates Streptococcus suis Pathogenicity in Mice by

Neutralizing Suilysin Activity. Front Microbiol. 2017;8:460. doi:

10.3389/fmicb.2017.00460. PubMed PMID: 28373868; PubMed Central PMCID:

PMCPMC5357624.

3.

Chen ZY, Chan PT, Ho KY, et al. Antioxidant activity of natural flavonoids is governed

by number and location of their aromatic hydroxyl groups. Chem Phys Lipids. 1996 Mar

29;79(2):157-63. PubMed PMID: 8640902.

4.

Arriagada F, Correa O, Gunther G, et al. Morin Flavonoid Adsorbed on Mesoporous

Silica, a Novel Antioxidant Nanomaterial. PLoS One. 2016;11(11):e0164507. doi:

10.1371/journal.pone.0164507. PubMed PMID: 27812111; PubMed Central PMCID:

PMCPMC5094702.

5.

Zhang R, Kang KA, Piao MJ, et al. Cellular protection of morin against the oxidative

stress induced by hydrogen peroxide. Chem Biol Interact. 2009 Jan 15;177(1):21-7. doi:

10.1016/j.cbi.2008.08.009. PubMed PMID: 18793623.

6.

Shirai A, Onitsuka M, Maseda H, et al. Effect of polyphenols on reactive oxygen species

production and cell growth of human dermal fibroblasts after irradiation with

ultraviolet-A light. Biocontrol Sci. 2015;20(1):27-33. doi: 10.4265/bio.20.27. PubMed

PMID: 25817810.

7.

Vanitha P, Senthilkumar S, Dornadula S, et al. Morin activates the Nrf2-ARE pathway

and reduces oxidative stress-induced DNA damage in pancreatic beta cells. Eur J

Pharmacol. 2017 Apr 15;801:9-18. doi: 10.1016/j.ejphar.2017.02.026. PubMed PMID:

28216051.

8.

Kim JM, Lee EK, Park G, et al. Morin modulates the oxidative stress-induced

NF-kappaB pathway through its anti-oxidant activity. Free Radic Res. 2010

Apr;44(4):454-61. doi: 10.3109/10715761003610737. PubMed PMID: 20187708.

9.

Lee KM, Lee Y, Chun HJ, et al. Neuroprotective and anti-inflammatory effects of morin

in a murine model of Parkinson's disease. J Neurosci Res. 2016 Oct;94(10):865-78. doi:

10.1002/jnr.23764. PubMed PMID: 27265894.

10.

MadanKumar P, NaveenKumar P, Devaraj H, et al. Morin, a dietary flavonoid, exhibits

anti-fibrotic effect and induces apoptosis of activated hepatic stellate cells by suppressing

canonical NF-kappaB signaling. Biochimie. 2015 Mar;110:107-18. doi:

21

10.1016/j.biochi.2015.01.002. PubMed PMID: 25577997.

11.

Lemkul JA, Bevan DR. Morin inhibits the early stages of amyloid beta-peptide

aggregation by altering tertiary and quaternary interactions to produce "off-pathway"

structures. Biochemistry. 2012 Jul 31;51(30):5990-6009. doi: 10.1021/bi300113x.

PubMed PMID: 22762350.

12.

Hardy J, Chartier-Harlin MC, Mullan M. Alzheimer disease: the new agenda. Am J Hum

Genet. 1992 Mar;50(3):648-51. PubMed PMID: 1539602; PubMed Central PMCID:

PMCPMC1684301.

13.

Sharma D, Singh M, Kumar P, et al. Development and characterization of morin hydrate

loaded microemulsion for the management of Alzheimer's disease. Artif Cells Nanomed

Biotechnol. 2017 Jan 19:1-14. doi: 10.1080/21691401.2016.1276919. PubMed PMID:

28102083.

14.

Sahu SC, Gray GC. Lipid peroxidation and DNA damage induced by morin and

naringenin in isolated rat liver nuclei. Food Chem Toxicol. 1997 May;35(5):443-7.

PubMed PMID: 9216742.

15.

Roy AS, Samanta SK, Ghosh P, et al. Cell cytotoxicity and serum albumin binding

capacity of the morin-Cu(ii) complex and its effect on deoxyribonucleic acid. Mol Biosyst.

2016 Aug 16;12(9):2818-33. doi: 10.1039/c6mb00344c. PubMed PMID: 27345944.

16.

Hardigree AA, Epler JL. Comparative mutagenesis of plant flavonoids in microbial

systems. Mutat Res. 1978 Nov;58(2-3):231-9. PubMed PMID: 370575.

17.

Brown JP, Dietrich PS. Mutagenicity of plant flavonols in the Salmonella/mammalian

microsome test: activation of flavonol glycosides by mixed glycosidases from rat cecal

bacteria and other sources. Mutat Res. 1979 Mar;66(3):223-40. PubMed PMID: 375081.

18.

Kasai H, Chung MH, Jones DS, et al. 8-Hydroxyguanine, a DNA adduct formed by

oxygen radicals: its implication on oxygen radical-involved mutagenesis/carcinogenesis. J

Toxicol Sci. 1991 Feb;16 Suppl 1:95-105. PubMed PMID: 1656061.

19.

Oikawa S, Yamada K, Yamashita N, et al. N-acetylcysteine, a cancer chemopreventive

agent, causes oxidative damage to cellular and isolated DNA. Carcinogenesis. 1999

Aug;20(8):1485-90. PubMed PMID: 10426796.

20.

Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing

specific inhibition of cyclin D/CDK4. Nature. 1993 Dec 16;366(6456):704-7. doi:

10.1038/366704a0. PubMed PMID: 8259215.

21.

Oikawa S, Murakami K, Kawanishi S. Oxidative damage to cellular and isolated DNA by

homocysteine: implications for carcinogenesis. Oncogene. 2003 Jun 05;22(23):3530-8.

doi: 10.1038/sj.onc.1206440. PubMed PMID: 12789261.

22.

Kawanishi S, Yamamoto K. Mechanism of site-specific DNA damage induced by

22

methylhydrazines in the presence of copper(II) or manganese(III). Biochemistry. 1991

Mar 26;30(12):3069-75. PubMed PMID: 1848785.

23.

Yamamoto K, Kawanishi S. Site-specific DNA damage induced by hydrazine in the

presence of manganese and copper ions. The role of hydroxyl radical and hydrogen atom.

J Biol Chem. 1991 Jan 25;266(3):1509-15. PubMed PMID: 1846358.

24.

Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical

cleavages. Methods Enzymol. 1980;65(1):499-560. PubMed PMID: 6246368.

25.

Kasai H, Crain PF, Kuchino Y, et al. Formation of 8-hydroxyguanine moiety in cellular

DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis.

1986 Nov;7(11):1849-51. PubMed PMID: 3769133.

26.

Ito K, Inoue S, Yamamoto K, et al. 8-Hydroxydeoxyguanosine formation at the 5' site of

5'-GG-3' sequences in double-stranded DNA by UV radiation with riboflavin. J Biol

Chem. 1993 Jun 25;268(18):13221-7. PubMed PMID: 8390459.

27.

Pryor WA, Tang RH. Ethylene formation from methional. Biochem Biophys Res

Commun. 1978 Mar 30;81(2):498-503. PubMed PMID: 666768.

28.

Northrop JH. The Kinetics of the Decomposition of Peroxide by Catalase. J Gen Physiol.

1925 Jan 20;7(3):373-87. PubMed PMID: 19872144; PubMed Central PMCID:

PMCPMC2140704.

29.

Rapisarda VA, Volentini SI, Farias RN, et al. Quenching of bathocuproine disulfonate

fluorescence by Cu(I) as a basis for copper quantification. Anal Biochem. 2002 Aug

01;307(1):105-9. PubMed PMID: 12137786.

30.

Burrows CJ, Muller JG. Oxidative Nucleobase Modifications Leading to Strand Scission.

Chem Rev. 1998 May 7;98(3):1109-1152. PubMed PMID: 11848927.

31.

Geierstanger BH, Kagawa TF, Chen SL, et al. Base-specific binding of copper(II) to

Z-DNA. The 1.3-A single crystal structure of d(m5CGUAm5CG) in the presence of

CuCl2. J Biol Chem. 1991 Oct 25;266(30):20185-91. PubMed PMID: 1939079.

32.

Froystein NA, Davis JT, Reid BR, et al. Sequence-selective metal ion binding to DNA

oligonucleotides. Acta Chem Scand. 1993 Jul;47(7):649-57. PubMed PMID: 8363924.

33.

Rowley DA, Halliwell B. Superoxide-dependent and ascorbate-dependent formation of

hydroxyl radicals in the presence of copper salts: a physiologically significant reaction?

Arch Biochem Biophys. 1983 Aug;225(1):279-84. PubMed PMID: 6311105.

34.

Kawanishi S, Oikawa S, Murata M, et al. Site-specific oxidation at GG and GGG

sequences in double-stranded DNA by benzoyl peroxide as a tumor promoter.

Biochemistry. 1999 Dec 21;38(51):16733-9. PubMed PMID: 10606504.

35.

Kobayashi H, Oikawa S, Umemura S, et al. Mechanism of metal-mediated DNA damage

and apoptosis induced by 6-hydroxydopamine in neuroblastoma SH-SY5Y cells. Free

23

Radic Res. 2008 Jul;42(7):651-60. doi: 10.1080/10715760802270334. PubMed PMID:

18654880.

36.

Min K, Ebeler SE. Flavonoid effects on DNA oxidation at low concentrations relevant to

physiological levels. Food Chem Toxicol. 2008 Jan;46(1):96-104. doi:

10.1016/j.fct.2007.07.002. PubMed PMID: 17707569.

37.

Yamamoto K, Kawanishi S. Hydroxyl free radical is not the main active species in

site-specific DNA damage induced by copper (II) ion and hydrogen peroxide. J Biol

Chem. 1989 Sep 15;264(26):15435-40. PubMed PMID: 2549063.

38.

Oikawa S, Kawanishi S. Site-specific DNA damage induced by NADH in the presence of

copper(II): role of active oxygen species. Biochemistry. 1996 Apr 09;35(14):4584-90.

doi: 10.1021/bi9527000. PubMed PMID: 8605209.

39.

Oikawa S, Kawanishi S. Distinct mechanisms of site-specific DNA damage induced by

endogenous reductants in the presence of iron(III) and copper(II). Biochim Biophys

Acta. 1998 Jul 30;1399(1):19-30. PubMed PMID: 9714716.

40.

Oikawa S, Hirosawa I, Hirakawa K, et al. Site specificity and mechanism of oxidative

DNA damage induced by carcinogenic catechol. Carcinogenesis. 2001

Aug;22(8):1239-45. PubMed PMID: 11470755.

41.

Prutz WA. The interaction between hydrogen peroxide and the DNA-Cu(I) complex:

effects of pH and buffers. Z Naturforsch C. 1990 Nov-Dec;45(11-12):1197-206.

PubMed PMID: 1965680.

42.

Dizdaroglu M, Aruoma OI, Halliwell B. Modification of bases in DNA by copper

ion-1,10-phenanthroline complexes. Biochemistry. 1990 Sep 11;29(36):8447-51.

PubMed PMID: 2123717.

43.

Oikawa S, Furukawaa A, Asada H, et al. Catechins induce oxidative damage to cellular

and isolated DNA through the generation of reactive oxygen species. Free Radic Res.

2003 Aug;37(8):881-90. PubMed PMID: 14567448.

44.

Kummer S, Ruth W, Kragl U. Oxidation of Flavonols in an Electrochemical Flow Cell

Coupled Online with ESI-MS. Electroanal. 2016 May;28(5):990-997. doi:

10.1002/elan.201501055. PubMed PMID: WOS:000379040500011; English.

45.

Fuentes J, Atala E, Pastene E, et al. Quercetin Oxidation Paradoxically Enhances its

Antioxidant and Cytoprotective Properties. J Agr Food Chem. 2017 Dec

20;65(50):11002-11010. doi: 10.1021/acs.jafc.7b05214. PubMed PMID:

WOS:000418783400019; English.

46.

Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of Alzheimer abeta by

Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998

May 22;273(21):12817-26. PubMed PMID: 9582309.

24

47.

Bin Y, Li X, He Y, et al. Amyloid-beta peptide (1-42) aggregation induced by copper ions

under acidic conditions. Acta Biochim Biophys Sin (Shanghai). 2013 Jul;45(7):570-7.

doi: 10.1093/abbs/gmt044. PubMed PMID: 23747389.

48.

Hanaki M, Murakami K, Akagi K, et al. Structural insights into mechanisms for

inhibiting amyloid beta42 aggregation by non-catechol-type flavonoids. Bioorg Med

Chem. 2016 Jan 15;24(2):304-13. doi: 10.1016/j.bmc.2015.12.021. PubMed PMID:

26719209.

25

Figure legends

Fig. 1. Autoradiograms of 32P-5’-end-labeled DNA fragments incubated with morin in

the presence of Cu(II).

Reaction mixtures contained the 32P-5’-end-labeled 328 bp fragment, 100 M/base calf

thymus DNA, the indicated concentrations of morin, and 20 M CuCl2 in 4 mM sodium

phosphate buffer (pH 7.8) containing 5 M DTPA. After incubation at 37 ºC for 5 hr,

the DNA fragment was treated A) with, or B) without, piperidine and electrophoresed

on a polyacrylamide gel.

Fig. 2. Effects of scavengers on morin-induced DNA damage in the presence of

Cu(II).

Reaction mixtures contained the 32P-5’-end-labeled 328 bp fragment, 100 M/base calf

thymus DNA, 50 M morin, each scavenger or bathocuproine, and 20 M CuCl2 in 4

mM sodium phosphate buffer (pH 7.8) containing 5 M DTPA. After incubation at 37

ºC for 5 hr, the DNA fragment was treated with piperidine and electrophoresed on a

polyacrylamide gel. The concentration of each scavenger and bathocuproine were as

follows: 0.8 M ethanol (EtOH), 0.1 M mannitol, 0.1 M sodium formate, 1.0 M

methional, 30 U catalase, 50 μM bathocuproine, and 30 U superoxide dismutase (SOD).

Fig. 3. Site specificity of morin-induced DNA cleavage in the presence of Cu(II).

Reaction mixtures contained the 32P-5’-end-labeled A) 147 bp fragment or B) 309 bp

fragment, 100 M/base calf thymus DNA, 500 M morin, and 20 M CuCl2 in 4 mM

sodium phosphate buffer (pH 7.8) containing 5 M DTPA. After incubation at 37 ºC for

5 hr, the DNA fragment was treated with piperidine and electrophoresed on a

polyacrylamide gel. Abbreviations indicate each DNA base, A: adenine, T: thymine,

G: guanine, C: cytosine.

Fig. 4. Formation of 8-oxodG in calf thymus DNA induced by morin in the presence

of Cu(II).

Calf thymus DNA fragments of 100 μM/base were incubated with indicated

concentrations of morin in the presence of 20 μM CuCl2 in 4 mM sodium phosphate

buffer (pH 7.8) containing 5 M DTPA at 37ºC for 1 hr. After ethanol precipitation, the

26

DNA was digested to nucleosides with nuclease P1 and calf intestine phosphatase, then

analyzed with an HPLC-ECD. In order to clarify the mechanism of autoxidation,

dissolved oxygen in the reaction mixture containing morin and Cu(II) was removed by

bubbling nitrogen gas for 1 min (hypoxic conditions), after which 8-oxodG was

determined. Results are expressed as mean of values obtained from two independent

experiments.

Fig. 5.

Analysis of reaction products by morin in the presence of Cu(II).

(A) HPLC chromatograms of oxidized products of morin after reaction at 37 ºC for 21

hr. Reaction mixture consisted 500 µM of morin and (a) 0 µM, (b) 20 µM, or (c) 200 µM of

CuCl2 in 4 mM sodium phosphate buffer (pH 7.8) containing 5 M DTPA. (B) 1H- and

13

C-NMR spectra of the major oxidized product (Rt 14.8 min) were recorded in

DMSO-d6 at 20 ºC. In the 1H-NMR chart, integral values corresponding each proton

were indicated under the scale bar of chemical shift. (C) Estimated chemical structure of

the oxidized product generated by morin and Cu(II).

Fig. 6. A possible mechanism of oxidative DNA damage induced by morin in the

presence of Cu(II).

27

Fig. 1

A) Piperidine (+)

B) Piperidine (-)

500

200

100

50

20

500

200

100

50

20

Morin (μM)

+ SOD

+ Bathocuproine

+ Catalase

+ Methional

+ Sodium formate

+ Mannitol

+ EtOH

Morin + Cu(II)

Control

Fig. 2

Fig. 3

A) DNA fragment of 147 bp (p16)

10

Intensity

(5’)

AA

AAG

GA

AA

AC

(3’)

GG

GC

9910

9920

9900

9890

9880

B) DNA fragment of 309 bp (p16)

Intensity

40

20

(5’)

C C

T AT

C GG C

CG

G C

CC

A C GC T

CC

T C

C G A TC G

G G A A G

C T T TC

GTC

T G

(3’)

TT

9500

9510

9520

9530

9540

9550

9560

Nucleotide number

Fig. 4

180

8-oxodG/dG (x100000)

160

140

120

normal conditions

100

80

-hypoxic conditions

60

40

20

100

200

300

400

500

Morin (μM)

B-1)

Fig. 5

1H-NMR

in DMSO-d6, 600 MHz

A)

DMSO

uV

mV

95000

85000

H2O

5-CH

14.8

min

90000

90

morin

I I

80000

80

75000

70000

70

3-CH

6-CH

65000

4-OH

60000

60

55000

COOH

35000

30000

30

(c)

25000

20000

20

(a)

5000

12

10

'-r''-r'y

0.52

10000

10

14

(b)

15000

2-OH

. .

ppm

1.03

1.00

5.6 8.0 12.5

min min min

1.01

40

40000

1.00

45000

0.90

50000

50

-5000

0.0

5.0

10.0

10

15.0

15

20.0

20

25.0

25

30.0

30

35.0

35

Retention time (Rt)

40.0

40

min

45

B-2)

min

13C-NMR

in DMSO-d6, 150 MHz

DMSO

C)

OH

HO

1-C

6-CH

4-C, 2-C

5-CH

OH

3-CH

~ I~

COOH

2,4-dihydroxybenzoic acid

200

180

160

140

120

100

80

60

40

20

ppm

Fig. 6

reactive oxygen

species

[Cu(I)OOH]

H2O2

O2・- O2

HO 2’

HO

1’

O 2

6’

OH

3’

H2O2

OH

4’

HO

Cu(II) Cu(I)

5’

ー亡

oxidative

DNA damage

HO

HO

OH

HO

O2 O2・-

OH

Morin

OH

OH

para-quinone methide

H2O

HO

OH

HO

OH

OH

HO

HO

HO

OH

OH

OH O

OH

OH

2,4-dihydroxybenzoic acid

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る