リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The CST complex facilitates cell survival under oxidative genotoxic stress」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The CST complex facilitates cell survival under oxidative genotoxic stress

Hara, Tomohiko Nakaoka, Hidenori Miyoshi, Tomoicihiro Ishikawa, Fuyuki 京都大学 DOI:10.1371/journal.pone.0289304

2023.08

概要

Genomic DNA is constantly exposed to a variety of genotoxic stresses, and it is crucial for organisms to be equipped with mechanisms for repairing the damaged genome. Previously, it was demonstrated that the mammalian CST (CTC1-STN1-TEN1) complex, which was originally identified as a single-stranded DNA-binding trimeric protein complex essential for telomere maintenance, is required for survival in response to hydroxyurea (HU), which induces DNA replication fork stalling. It is still unclear, however, how the CST complex is involved in the repair of diverse types of DNA damage induced by oxidizing agents such as H₂O₂. STN1 knockdown (KD) sensitized HeLa cells to high doses of H₂O₂. While H₂O₂ induced DNA strand breaks throughout the cell cycle, STN1 KD cells were as resistant as control cells to H₂O₂ treatment when challenged in the G1 phase of the cell cycle, but they were sensitive when exposed to H₂O₂ in S/G2/M phase. STN1 KD cells showed a failure of DNA synthesis and RAD51 foci formation upon H₂O₂ treatment. Chemical inhibition of RAD51 in shSTN1 cells did not exacerbate the sensitivity to H₂O₂, implying that the CST complex and RAD51 act in the same pathway. Collectively, our results suggest that the CST complex is required for maintaining genomic stability in response to oxidative DNA damage, possibly through RAD51-dependent DNA repair/protection mechanisms.

この論文で使われている画像

参考文献

1.

Goulian M, Heard CJ. The mechanism of action of an accessory protein for DNA polymerase alpha/primase. J Biol Chem. 1990 Aug 5; 265(22):13231–9. Erratum in: J Biol Chem 1990 Nov 5;265(31):19369.

PMID: 2376593.

2.

Goulian M, Heard CJ, Grimm SL. Purification and properties of an accessory protein for DNA polymerase alpha/primase. J Biol Chem. 1990 Aug 5; 265(22):13221–30. PMID: 2165497.

3.

Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, et al. RPA-like mammalian

Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the

Pot1 pathway. Mol Cell. 2009 Oct 23; 36(2):193–206. https://doi.org/10.1016/j.molcel.2009.08.009

PMID: 19854130.

4.

Casteel DE, Zhuang S, Zeng Y, Perrino FW, Boss GR, Goulian M, et al. A DNA polymerase-α�primase

cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol

Chem. 2009 Feb 27; 284(9):5807–18. https://doi.org/10.1074/jbc.M807593200 PMID: 19119139.

5.

Nakaoka H, Nishiyama A, Saito M, Ishikawa F. Xenopus laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in priming DNA synthesis on single-stranded DNA template in Xenopus egg extract.

J Biol Chem. 2012 Jan 2; 287(1):619–627. https://doi.org/10.1074/jbc.M111.263723 PMID:

22086929.

6.

Huang C, Dai X, Chai W. Human Stn1 protects telomere integrity by promoting efficient lagging-strand

synthesis at telomeres and mediating C-strand fill-in. Cell Res. 2012 Dec; 22(12):1681–95. https://doi.

org/10.1038/cr.2012.132 PMID: 22964711.

7.

Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin

organization. Nat Rev Mol Cell Biol. 2021 Apr; 22(4):283–298. https://doi.org/10.1038/s41580-02100328-y Erratum in: Nat Rev Mol Cell Biol. 2021 Feb 19;: PMID: 33564154.

8.

Murzin AG. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993 Mar; 12(3):861–7. https://doi.org/10.1002/j.14602075.1993.tb05726.x PMID: 8458342.

9.

Lue NF, Chan J, Wright WE, Hurwitz J. The CDC13-STN1-TEN1 complex stimulates Pol α activity by

promoting RNA priming and primase-to-polymerase switch. Nat Commun. 2014 Dec 12; 5:5762.

https://doi.org/10.1038/ncomms6762 PMID: 25503194.

10.

Ganduri S, Lue NF. STN1-POLA2 interaction provides a basis for primase-pol α stimulation by human

STN1. Nucleic Acids Res. 2017 Sep 19; 45(16):9455–9466. https://doi.org/10.1093/nar/gkx621 PMID:

28934486.

11.

Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system—a

new perspective. FEBS J. 2009 Feb; 276(4):943–63. https://doi.org/10.1111/j.1742-4658.2008.06841.x

PMID: 19154342.

12.

Lim CJ, Barbour AT, Zaug AJ, Goodrich KJ, McKay AE, Wuttke DS, et al. The structure of human CST

reveals a decameric assembly bound to telomeric DNA. Science. 2020 Jun 5; 368(6495):1081–1085.

https://doi.org/10.1126/science.aaz9649 PMID: 32499435.

13.

Lue NF, Zhou R, Chico L, Mao N, Steinberg-Neifach O, Ha T. The telomere capping complex CST has

an unusual stoichiometry, makes multipartite interaction with G-Tails, and unfolds higher-order G-tail

structures. PLoS Genet. 2013; 9(1):e1003145. https://doi.org/10.1371/journal.pgen.1003145 PMID:

23300477

14.

Bhattacharjee A, Stewart J, Chaiken M, Price CM. STN1 OB Fold Mutation Alters DNA Binding and

Affects Selective Aspects of CST Function. PLoS Genet. 2016 Sep 30; 12(9):e1006342. https://doi.org/

10.1371/journal.pgen.1006342 PMID: 27690379.

15.

Chen LY, Redon S, Lingner J. The human CST complex is a terminator of telomerase activity. Nature.

2012 Aug 23; 488(7412):540–4. https://doi.org/10.1038/nature11269 PMID: 22763445.

16.

Zaug AJ, Goodrich KJ, Song JJ, Sullivan AE, Cech TR. Reconstitution of a telomeric replicon organized

by CST. Nature. 2022 Aug; 608(7924):819–825. https://doi.org/10.1038/s41586-022-04930-8 PMID:

35831508.

PLOS ONE | https://doi.org/10.1371/journal.pone.0289304 August 17, 2023

23 / 25

PLOS ONE

The CST complex facilitates cell survival under oxidative genotoxic stress

17.

Cai SW, Zinder JC, Svetlov V, Bush MW, Nudler E, Walz T, et al. Cryo-EM structure of the human CSTPolα/primase complex in a recruitment state. Nat Struct Mol Biol. 2022 Aug; 29(8):813–819. https://doi.

org/10.1038/s41594-022-00766-y PMID: 35578024.

18.

He Q, Lin X, Chavez BL, Agrawal S, Lusk BL, Lim CJ. Structures of the human CST-Polα-primase complex bound to telomere templates. Nature. 2022 Aug; 608(7924):826–832. https://doi.org/10.1038/

s41586-022-05040-1 PMID: 35830881.

19.

Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD 2nd, Wright WE, et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J. 2012 Aug

29; 31(17):3537–49. https://doi.org/10.1038/emboj.2012.215 PMID: 22863775.

20.

Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become

progressively inactivated and require two different RAD51-mediated pathways for restart and repair.

Mol Cell. 2010 Feb 26; 37(4):492–502. https://doi.org/10.1016/j.molcel.2010.01.021 PMID: 20188668.

21.

Karnani N, Dutta A. The effect of the intra-S-phase checkpoint on origins of replication in human cells.

Genes Dev. 2011 Mar 15; 25(6):621–33. https://doi.org/10.1101/gad.2029711 PMID: 21406556.

22.

Wang F, Stewart J, Price CM. Human CST abundance determines recovery from diverse forms of DNA

damage and replication stress. Cell Cycle. 2014; 13(22):3488–98. https://doi.org/10.4161/15384101.

2014.964100 PMID: 25483097.

23.

Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L, Jia P, et al. Human CST Facilitates

Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication

Stress. Cell Rep. 2016 Aug 2; 16(5):1300–1314. https://doi.org/10.1016/j.celrep.2016.06.077 Erratum

in: Cell Rep. 2016 Aug 16;16(7):2048. PMID: 27487043.

24.

Yamamoto I, Nakaoka H, Takikawa M, Tashiro S, Kanoh J, Miyoshi T, et al. Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions. Nucleic Acids Res. 2021

Oct 11; 49(18):10465–10476. https://doi.org/10.1093/nar/gkab767 PMID: 34520548.

25.

Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol

Biol. 2018 Jun; 25(6):446–453. https://doi.org/10.1038/s41594-018-0075-z PMID: 29807999.

26.

Renkawitz J, Lademann CA, Jentsch S. Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol. 2014 Jun; 15(6):369–83. https://doi.org/10.1038/nrm3805 PMID:

24824069.

27.

Vallerga MB, Mansilla SF, Federico MB, Bertolin AP, Gottifredi V. Rad51 recombinase prevents Mre11

nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV

irradiation. Proc Natl Acad Sci U S A. 2015 Dec 1; 112(48):E6624–33. https://doi.org/10.1073/pnas.

1508543112 PMID: 26627254.

28.

Lei KH, Yang HL, Chang HY, Yeh HY, Nguyen DD, Lee TY, et al. Crosstalk between CST and RPA regulates RAD51 activity during replication stress. Nat Commun. 2021 Nov 5; 12(1):6412. https://doi.org/

10.1038/s41467-021-26624-x PMID: 34741010.

29.

Lyu X, Lei KH, Biak Sang P, Shiva O, Chastain M, Chi P, et al. Human CST complex protects stalled

replication forks by directly blocking MRE11 degradation of nascent-strand DNA. EMBO J. 2021 Jan

15; 40(2):e103654. https://doi.org/10.15252/embj.2019103654 PMID: 33210317.

30.

Zhou Q, Chai W. Suppression of STN1 enhances the cytotoxicity of chemotherapeutic agents in cancer

cells by elevating DNA damage. Oncol Lett. 2016 Aug; 12(2):800–808. https://doi.org/10.3892/ol.2016.

4676 PMID: 27446354.

31.

Chen Q, Bian C, Wang X, Liu X, Ahmad Kassab M, Yu Y, et al. ADP-ribosylation of histone variant

H2AX promotes base excision repair. EMBO J. 2021 Jan 15; 40(2):e104542. https://doi.org/10.15252/

embj.2020104542 PMID: 33264433.

32.

Inano S, Sato K, Katsuki Y, Kobayashi W, Tanaka H, Nakajima K, et al. RFWD3-Mediated Ubiquitination Promotes Timely Removal of Both RPA and RAD51 from DNA Damage Sites to Facilitate Homologous Recombination. Mol Cell. 2020 Apr 2; 78(1):192. https://doi.org/10.1016/j.molcel.2020.03.026

Erratum for: Mol Cell. 2017 Jun 1;66(5):622-634.e8. PMID: 32243829.

33.

Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement MV. OpenComet: an automated tool for

comet assay image analysis. Redox Biol. 2014 Jan 9; 2:457–65. https://doi.org/10.1016/j.redox.2013.

12.020 Erratum in: Redox Biol. 2021 Apr;40:101876. PMID: 24624335.

34.

Tanaka T, Halicka D, Traganos F, Darzynkiewicz Z. Cytometric analysis of DNA damage: phosphorylation of histone H2AX as a marker of DNA double-strand breaks (DSBs). Methods Mol Biol. 2009;

523:161–8. https://doi.org/10.1007/978-1-59745-190-1_11 PMID: 19381940.

35.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source

platform for biological-image analysis. Nat Methods. 2012 Jun 28; 9(7):676–82. https://doi.org/10.1038/

nmeth.2019 PMID: 22743772.

PLOS ONE | https://doi.org/10.1371/journal.pone.0289304 August 17, 2023

24 / 25

PLOS ONE

The CST complex facilitates cell survival under oxidative genotoxic stress

36.

Krokan HE, Bjørås M. Base excision repair. Cold Spring Harb Perspect Biol. 2013 Apr 1; 5(4):a012583.

https://doi.org/10.1101/cshperspect.a012583 PMID: 23545420.

37.

Driessens N, Versteyhe S, Ghaddhab C, Burniat A, De Deken X, Van Sande J, et al. Hydrogen peroxide

induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for

this organ. Endocr Relat Cancer. 2009 Sep; 16(3):845–56. https://doi.org/10.1677/ERC-09-0020 PMID:

19509065.

38.

Wang F, Stewart JA, Kasbek C, Zhao Y, Wright WE, Price CM. Human CST has independent functions

during telomere duplex replication and C-strand fill-in. Cell Rep. 2012 Nov 29; 2(5):1096–103. https://

doi.org/10.1016/j.celrep.2012.10.007 PMID: 23142664.

39.

Kasbek C, Wang F, Price CM. Human TEN1 maintains telomere integrity and functions in genome-wide

replication restart. J Biol Chem. 2013 Oct 18; 288(42):30139–30150. https://doi.org/10.1074/jbc.M113.

493478 PMID: 24025336.

40.

Kopp B, Khoury L, Audebert M. Validation of the γH2AX biomarker for genotoxicity assessment: a review.

Arch Toxicol. 2019 Aug; 93(8):2103–2114. https://doi.org/10.1007/s00204-019-02511-9 PMID: 31289893.

41.

Katsube T, Mori M, Tsuji H, Shiomi T, Wang B, Liu Q, et al. Most hydrogen peroxide-induced histone

H2AX phosphorylation is mediated by ATR and is not dependent on DNA double-strand breaks. J Biochem. 2014 Aug; 156(2):85–95. https://doi.org/10.1093/jb/mvu021 PMID: 24682951.

42.

Berniak K, Rybak P, Bernas T, Zarębski M, Biela E, Zhao H, et al. Relationship between DNA damage

response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative

3D image analysis. Cytometry A. 2013 Oct; 83(10):913–24. https://doi.org/10.1002/cyto.a.22327 PMID:

23846844.

43.

Kurose A, Tanaka T, Huang X, Traganos F, Dai W, Darzynkiewicz Z. Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in

relation to cell cycle phase and induction of apoptosis. Cytometry A. 2006 Apr; 69(4):212–21. https://

doi.org/10.1002/cyto.a.20241 PMID: 16528719.

44.

de Feraudy S, Limoli CL, Giedzinski E, Karentz D, Marti TM, Feeney L, et al. Pol eta is required for DNA

replication during nucleotide deprivation by hydroxyurea. Oncogene. 2007 Aug 23; 26(39):5713–21.

https://doi.org/10.1038/sj.onc.1210385 PMID: 17369853.

45.

Ward IM, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001 Dec 21; 276(51):47759–62. https://doi.org/10.1074/jbc.C100569200

PMID: 11673449.

46.

Huang F, Motlekar NA, Burgwin CM, Napper AD, Diamond SL, Mazin AV. Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem Biol. 2011 Jun 17; 6

(6):628–35. https://doi.org/10.1021/cb100428c PMID: 21428443.

47.

Huang F, Mazina OM, Zentner IJ, Cocklin S, Mazin AV. Inhibition of homologous recombination in

human cells by targeting RAD51 recombinase. J Med Chem. 2012 Apr 12; 55(7):3011–20. https://doi.

org/10.1021/jm201173g PMID: 22380680.

48.

Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic

mammalian cells. Nat Rev Mol Cell Biol. 2019 Nov; 20(11):698–714. https://doi.org/10.1038/s41580019-0152-0 PMID: 31263220.

49.

Willis N, Rhind N. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div.

2009 Jul 3; 4:13. https://doi.org/10.1186/1747-1028-4-13 PMID: 19575778.

50.

Wassing IE, Esashi F. RAD51: Beyond the break. Semin Cell Dev Biol. 2021 May; 113:38–46. https://

doi.org/10.1016/j.semcdb.2020.08.010 PMID: 32938550.

51.

Nguyen DD, Kim E, Le NT, Ding X, Jaiswal RK, Kostlan RJ, et al. Deficiency in mammalian STN1 promotes colon cancer development via inhibiting DNA repair. Sci Adv. 2023 May 10; 9(19):eadd8023.

https://doi.org/10.1126/sciadv.add8023 PMID: 37163605.

52.

Barazas M, Annunziato S, Pettitt SJ, de Krijger I, Ghezraoui H, Roobol SJ, et al. The CST Complex

Mediates End Protection at Double-Strand Breaks and Promotes PARP Inhibitor Sensitivity in BRCA1Deficient Cells. Cell Rep. 2018 May 15; 23(7):2107–2118. https://doi.org/10.1016/j.celrep.2018.04.046

PMID: 29768208.

53.

Mirman Z, Sasi NK, King A, Chapman JR, de Lange T. 53BP1-shieldin-dependent DSB processing in

BRCA1-deficient cells requires CST-Polα-primase fill-in synthesis. Nat Cell Biol. 2022 Jan; 24(1):51–

61. https://doi.org/10.1038/s41556-021-00812-9 PMID: 35027730.

54.

Feng X, Hsu SJ, Bhattacharjee A, Wang Y, Diao J, Price CM. CTC1-STN1 terminates telomerase while

STN1-TEN1 enables C-strand synthesis during telomere replication in colon cancer cells. Nat Commun.

2018 Jul 19; 9(1):2827. https://doi.org/10.1038/s41467-018-05154-z PMID: 30026550.

55.

Nguyen BC, Tawata S. The Chemistry and Biological Activities of Mimosine: A Review. Phytother Res.

2016 Aug; 30(8):1230–42. https://doi.org/10.1002/ptr.5636 PMID: 27213712.

PLOS ONE | https://doi.org/10.1371/journal.pone.0289304 August 17, 2023

25 / 25

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る