リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe2

Soungmin Bae Kana Matsumoto Hannes Raebiger 20531403 Ken-ichi Shudo 40300876 Yong-Hoon Kim Ørjan Sele Handegård Tadaaki Nagao 40267456 Masahiro Kitajima 00343830 Yuji Sakai Xiang Zhang Robert Vajtai Pulickel Ajayan Junichiro Kono Jun Takeda 60202165 Ikufumi Katayama 80432532 横浜国立大学

2022.07.25

概要

In transition metal dichalcogenides, valley depolarization through intervalley carrier scattering by zone-edge phonons is often unavoidable. Although valley depolarization processes related to various acoustic phonons have been suggested, their optical verification is still vague due to nearly degenerate phonon frequencies on acoustic phonon branches at zone-edge momentums. Here we report an unambiguous phonon momentum determination of the longitudinal acoustic (LA) phonons at the K point, which are responsible for the ultrafast valley depolarization in monolayer MoSe2. Using sub-10-fs-resolution pump-probe spectroscopy, we observed coherent phonons signals at both even and odd-orders of zone-edge LA mode involved in intervalley carrier scattering process. Our phonon-symmetry analysis and first-principles calculations reveal that only the LA phonon at the K point, as opposed to the M point, can produce experimental odd-order LA phonon signals from its nonlinear optical modulation. This work will provide momentum-resolved descriptions of phonon-carrier intervalley scattering processes in valleytronic materials.

この論文で使われている画像

参考文献

1. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

2. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

3. Baranowski, M. et al. Dark excitons and the elusive valley polarization in transition metal dichalcogenides. 2D Mater.4, 025016 (2017).

4. Chow, C. M. et al. Phonon-assisted oscillatory exciton dynamics in monolayer MoSe2. npj 2D Mater. Appl. 1, 33 (2017).

5. Christiansen, D. et al. Phonon sidebands in monolayer transition metal dichalcogenides. Phys. Rev. Lett. 119, 187402 (2017).

6. Molina-Sanchez, A., Sangalli, D., Wirtz, L. & Marini, A. Ab Initio calculations of ultrashort carrier dynamics in two-dimensional materials: valley depolarization in single-layer WSe2. Nano Lett. 17, 4549–4555 (2017).

7. Wang, Z. et al. Intravalley spin-flip relaxation dynamics in singlelayer WS2. Nano Lett. 18, 6882–6891 (2018).

8. Li, Z. et al. Momentum-dark intervalley exciton in monolayer tungsten diselenide brightened via chiral phonon. ACS Nano 13, 14107–14113 (2019).

9. Brem, S. et al. Phonon-assisted photoluminescence from indirect excitons in monolayers of transition-metal dichalcogenides. Nano. Lett. 20, 2849–2856 (2020).

10. He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020).

11. Liu, E. et al. Multipath optical recombination of intervalley dark excitons and trions in monolayer WSe2. Phys. Rev. Lett. 124, 196802 (2020).

12. Wang, G. et al. Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers. Appl. Phys. Lett. 106, 112101 (2015).

13. Berkdemir, A. et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 3, 1755 (2013).

14. Gołasa, K. et al. Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 104, 092106 (2014).

15. Nam, D., Lee, J. U. & Cheong, H. Excitation energy dependent Raman spectrum of MoSe2. Sci. Rep. 5, 17113 (2015).

16. Soubelet, P., Bruchhausen, A. E., Fainstein, A., Nogajewski, K. & Faugeras, C. Resonance effects in the Raman scattering of monolayer and few-layerMoSe2. Phys. Rev. B 93, 155407 (2016).

17. Carvalho, B. R. et al. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).

18. Li, J.-M. et al. Double resonance Raman scattering in single-layer MoSe2 under moderate pressure. Chin. Phys. Lett. 36, 048201 (2019).

19. Shree, S. et al. Observation of exciton-phonon coupling in MoSe2 monolayers. Phys. Rev. B 98, 035302 (2018).

20. Jeong, T. Y. et al. Valley depolarization in monolayer transitionmetal dichalcogenides with zone-corner acoustic phonons. Nanoscale 12, 22487–22494 (2020).

21. Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).

22. Tornatzky, H., Gillen, R., Uchiyama, H. & Maultzsch, J. Phonon dispersion in MoS2. Phys. Rev. B 99, 144309 (2019).

23. Trovatello, C. et al. Strongly coupled coherent phonons in singlelayer MoS2. ACS Nano 14, 5700–5710 (2020).

24. Kioseoglou, G., Hanbicki, A. T., Currie, M., Friedman, A. L. & Jonker, B. T. Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 6, 25041 (2016).

25. Liu, E. et al. Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe2. Phys. Rev. Res. 1, 032007 (2019).

26. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

27. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

28. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

29. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

30. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

31. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

32. Paier, J., Marsman, M. & Kresse, G. Dielectric properties and excitons for extended systems from hybrid functionals. Phys. Rev. B 78, 121201 (2008).

33. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: A userfriendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る