リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MOTION BY CRYSTALLINE-LIKE MEAN CURVATURE : A SURVEY」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MOTION BY CRYSTALLINE-LIKE MEAN CURVATURE : A SURVEY

GIGA, YOSHIKAZU NORBERT, POŽÁR 北海道大学

2021.12.08

概要

We consider a class of anisotropic curvature flows called a crystalline curvature flow. We present a survey on this class of flows with special emphasis on the well-posedness of its initial value problem.

参考文献

[AT] F. Almgren and J. E. Taylor, Flat flow is motion by crystalline cur- vature for curves with crystalline energies. J. Differential Geom. 42 (1995), 1–22.

[ATW] F. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993), 387–438.

[ACC] F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in RN . Math. Ann. 332 (2005), 329–366.

[AGLM] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993), 199–257.

[ABT] S. Amato, G. Bellettini, L. Tealdi, Anisotropic mean curvature on facets and relations with capillarity. Geom. Flows 1 (2015), no. 1, 80–110.

[AB] M. Amar, G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 91–133.

[ACM] F. Andreu-Vaillo, V. Caselles and J. M. Mazón, Parabolic quasilin- ear equations minimizing linear growth functionals. Progress in Math- ematics, 223. Birkhäuser Verlag, Basel, 2004.

[A1] B. Andrews, Volume-preserving anisotropic mean curvature flow. In- diana Univ. Math. J. 50, 783–827 (2001)

[A2] B. Andrews, Singularities in crystalline curvature flows. Asian J. Math. 6 (2002), 101–121.

[AG] S. Angenent and M. E. Gurtin, Multiphase thermomechanics with in- terfacial structure. II. Evolution of an isothermal interface. Arch. Ra- tional Mech. Anal. 108 (1989), 323–391.

[An] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983), 293–318.

[At] H. Attouch, Variational convergence for functions and operators. Ap- plicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984

[BGNNM] J. W. Barrett, H. Garcke, R. Nürnberg, A variational formula- tion of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109 (2008), 1–44.

[BGNIFB] J. W. Barrett, H. Garcke, R. Nürnberg, Parametric approxi- mation of surface clusters driven by isotropic and anisotropic surface energies. Interfaces Free Bound. 12 (2010), 187–234.

[BGNADV] J. W. Barrett, H. Garcke, R. Nürnberg, Finite-element approx- imation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs-Thomson law. Adv. Differential Equations 18 (2013), 383–432.

[BGNZAMM] J. W. Barrett, H. Garcke, R. Nürnberg, On the stable dis- cretization of strongly anisotropic phase field models with applications to crystal growth. ZAMM Z. Angew. Math. Mech. 93 (2013), 719–732.

[BGNIMA] J. W. Barrett, H. Garcke, R. Nürnberg, Stable phase field ap- proximations of anisotropic solidification. IMA J. Numer. Anal. 34 (2014), 1289–1327.

[BCCN] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crys- talline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179 (2006), 109–152.

[BCCN09] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, The volume preserving crystalline mean curvature flow of convex sets in RN . J. Math. Pures Appl. 92, 499–527 (2009)

[BCherN] G. Bellettini, M. Chermisi and M. Novaga, Crystalline curvature flow of planar networks. Interfaces Free Bound. 8 (2006), 481–521.

[BGeN] G. Bellettini, C. Geldhauser and M. Novaga, Convergence of a semidiscrete scheme for a forward-backward parabolic equation. Adv. Differential Equations 18 (2013), 495–522.

[BGN] G. Bellettini, R. Goglione and M. Novaga, Approximation to driven motion by crystalline curvature in two dimensions. Adv. Math. Sci. Appl. 10 (2000), 467–493.

[BN] G. Bellettini and M. Novaga, Approximation and comparison for non- smooth anisotropic motion by mean curvature in RN . Math. Models Methods Appl. Sci. 10 (2000), 1–10.

[BNP99] G. Bellettini, M. Novaga and M. Paolini, Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces Free Bound. 1 (1999), 39–55.

[BNP01c] G. Bellettini, M. Novaga and M. Paolini, Characterization of facet breaking for nonsmooth mean curvature flow in the convex case. In- terfaces Free Bound. 3 (2001), 415–446.

[BNP01a] G. Bellettini, M. Novaga and M. Paolini, On a crystalline varia- tional problem. I. First variation and global L∞ regularity. Arch. Ra- tion. Mech. Anal. 157 (2001), 165–191.

[BNP01b] G. Bellettini, M. Novaga and M. Paolini, On a crystalline varia- tional problem. II. BV regularity and structure of minimizers on facets. Arch. Ration. Mech. Anal. 157 (2001), 193–217.

[BP95] G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differential Integral Equa- tions 8 (1995), 735–752.

[BP96] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (1996), 537– 566.

[Br73] H. Brezis, Opérateurs maximaux monotones et semi-groupes de con- tractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.

[BP70] H. Brezis, A. Pazy, Semigroups of nonlinear contractions on convex sets. J. Functional Analysis 6 (1970), 237–281.

[BP] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Functional Analysis 9 (1972), 63–74.

[BrK] L. Bronsard and R. V. Kohn, Motion by mean curvature as the sin- gular limit of Ginzburg-Landau dynamics. J. Differential Equations 90 (1991), 211–237.

[CT94] J. W. Cahn and J. E. Taylor, Surface motion by surface diffusion, Acta Metal 42 (1994), 1045–1063.

[Ca] D. Campbell, A first glance at crystal motion, Master’s thesis, Rutgers University, New Brunswick, NJ, 2002.

[CRCT] W. C. Carter, A. R. Roosen, J. W. Cahn and J. E. Taylor, Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces. Acta Metall. Mater. 43 (1995), 4309– 4323.

[CC] V. Caselles and A. Chambolle, Anisotropic curvature-driven flow of convex sets. Nonlinear Anal. 65 (2006), 1547–1577.

[Cha] A. Chambolle, An algorithm for mean curvature motion. Interfaces Free Bound. 6 (2004), 195–218.

[CMNP1] A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Exis- tence and uniqueness for anisotropic and crystalline mean curvature flows. J. Amer. Math. Soc. 32 (2019), 779–824.

[CMNP2] A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Gener- alized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE 12 (2019), 789–813.

[CMP] A. Chambolle, M. Morini and M. Ponsiglione, Existence and unique- ness for a crystalline mean curvature flow. Comm. Pure Appl. Math. 70 (2017), 1084–1114.

[CN07] A. Chambolle and M. Novaga, Approximation of the anisotropic mean curvature flow. Math. Models Methods Appl. Sci. 17 (2007), 833– 844.

[XChen] X. Chen, Generation and propagation of interfaces for reaction- diffusion equations. J. Differential Equations 96 (1992), 116–141.

[CGG] Y. G. Chen, Y. Giga and S. Goto, Uniqueness and existence of vis- cosity solutions of generalized mean curvature flow equations. J. Dif- ferential Geom. 33 (1991), 749–786.

[CLLMW] K. Craig, J.-G. Liu, J. Lu, J. L. Marzuola and L. Wang, A proximal-gradient algorithm for crystal surface evolution, arXiv: 2006.12528, Numerische Mathematik, to appear.

[CIL] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67.

[DDE] K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

[DG] C. Dohmen and Y. Giga, Selfsimilar shrinking curves for anisotropic curvature flow equations. Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 252–255.

[DGM] C. Dohmen, Y. Giga and N. Mizoguchi, Existence of selfsimilar shrinking curves for anisotropic curvature flow equations. Calc. Var. Partial Differential Equations 4 (1996), 103–119.

[Dz] G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

[EGS] C. M. Elliott, A. R. Gardiner and R. Schätzle, Crystalline curvature flow of a graph in a variational setting. Adv. Math. Sci. Appl. 8 (1998), 425–460.

[ElS] C. M. Elliott and S. A. Smitheman, Analysis of the TV regularization and H−1 fidelity model for decomposing an image into cartoon plus texture. Commun. Pure Appl. Anal. 6 (2007), 917–936.

[ElPS] C. M. Elliott, M. Paolini and R. Schätzle, Interface estimates for the fully anisotropic Allen-Cahn equation and anisotropic mean-curvature flow. Math. Models Methods Appl. Sci. 6 (1996), 1103–1118.

[ElS1] C. M. Elliott and R. Schätzle, The limit of the anisotropic double- obstacle Allen-Cahn equation. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 1217–1234.

[ElS2] C. M. Elliott and R. Schätzle, The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the nonsmooth case. SIAM J. Math. Anal. 28 (1997), 274–303.

[EGI] T. Eto, Y. Giga and K. Ishii, An area minimizing scheme for anisotropic mean-curvature flow. Adv. Differential Equations 17 (2012), 1031–1084.

[E] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111, (1989), 359– 375.

[ESS] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992), 1097–1123.

[ES] L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I. J. Differential Geom. 33 (1991), 635–681.

[FiMP] A. Figalli, F. Maggi and A. Pratelli, A mass transportation ap- proach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010), 167–211.

[FM] I. Fonseca and S. Müller, A uniqueness proof for the Wulff Theorem. Proc. Roy. Soc. Edinburgh Sect. A: Math. 119 (1991), 125–136.

[FG] T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted cur- vature. World Congress of Nonlinear Analysts ’92, Vol. I–IV (Tampa, FL, 1992), 47–56, de Gruyter, Berlin, 1996.

[Ga93] M. E. Gage, Evolving plane curves by curvature in relative geome- tries. Duke Math. J. 72 (1993), 441–466.

[GaL94] M. E. Gage and Y. Li, Evolving plane curves by curvature in rel- ative geometries. II. Duke Math. J. 75 (1994), 79–98.

[GeT] R. Gérard and H. Tahara, Singular nonlinear partial differential equa- tions. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1996. viii+269 pp.

[G] Y. Giga, Surface evolution equations. A level set approach. Mono- graphs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006

[GG96] M.-H. Giga and Y. Giga, Consistency in evolutions by crystalline curvature, Free boundary problems, theory and applications (Za- kopane, 1995). Pitman Res. Notes Math. Ser. 363, Longman, Harlow (1996), 186–202.

[GG] M.-H. Giga and Y. Giga, Geometric evolution by nonsmooth interfa- cial energy. Proc. of Banach Center Minisemester, “Nonlinear Analysis and Applications”, Gakuto (1996), 125–140.

[GG98] M.-H. Giga and Y. Giga, A subdifferential interpretation of crys- talline motion under nonuniform driving force. Dynamical systems and differential equations, Vol. I (Springfield, MO, 1996). Discrete Contin. Dynam. Systems 1998, Added Volume I, 276–287.

[GG1] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted cur- vature. Arch. Rational Mech. Anal. 141 (1998), 117–198.

[GG2] M.-H. Giga and Y. Giga, Stability for evolving graphs by nonlocal weighted curvature. Comm. Partial Differential Equations 24 (1999), 109–184.

[GG3] M.-H. Giga and Y. Giga, Crystalline and level set flow – conver- gence of a crystalline algorithm for a general anisotropic curvature flow in the plane. Free boundary problems: theory and applications, I (Chiba, 1999), 64–79, GAKUTO Internat. Ser. Math. Sci. Appl., 13, Gakko¯tosho, Tokyo, 2000.

[GG4] M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane. Arch. Ration. Mech. Anal. 159 (2001), 295–333.

[GG10] M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math. 27 (2010), 323– 345.

[GG13] M.-H. Giga and Y. Giga, On the role of kinetic and interfacial anisotropy in the crystal growth theory. Interfaces Free Bound. 15 (2013), 429–450.

[GG21] M.-H. Giga and Y. Giga, Crystalline surface diffusion flow for graph- like funtions. in preparation.

[GGH] M.-H. Giga, Y. Giga and H. Hontani, Self-similar expanding solu- tions in a sector for a crystalline flow. SIAM J. Math. Anal. 37 (2005), 1207–1226.

[GGKO] M.-H. Giga, Y. Giga, R. Kuroda and Y. Ochiai, Crystalline flow starting from a general polygon. Discrete Contin. Dyn. Syst., to ap- pear.

[GGN] M.-H. Giga, Y. Giga, A. Nakayasu, On general existence results for one-dimensional singular diffusion equations with spatially inhomoge- neous driving force. Geometric Partial Differential Equations proceed- ings, pp. 145–170, Scuola Normale Superiore, Pisa, 2013.

[MGP2] M.-H. Giga, Y. Giga and N. Požár, Anisotropic total variation flow of non-divergence type on a higher dimensional torus. Adv. Math. Sci. Appl. 23 (2013), 235–266.

[MGP1] M.-H. Giga, Y. Giga and N. Požár, Periodic total variation flow of non-divergence type in Rn. J. Math. Pures Appl. (9) 102 (2014), 203–233.

[GHK] Y. Giga, Motion of a graph by convexified energy. Hokkaido Math. J. 23 (1994), 185–212.

[G06] Y. Giga, Surface evolution equations. A level set approach. Mono- graphs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006.

[GGo] Y. Giga and S. Goto, Geometric evolution of phase-boundaries. On the evolution of phase boundaries (Minneapolis, MN, 1990–91), 51–65, IMA Vol. Math. Appl., 43, Springer, New York, 1992.

[GGu] Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane. Quart. Appl. Math. 54 (1996), 727–737.

[GK] Y. Giga and R. V. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations. Discrete Contin. Dyn. Syst. 30 (2011), 509–535.

[GKM] Y. Giga, H. Kuroda and H. Matsuoka, Fourth-order total varia- tion flow with Dirichlet condition: Characterization of evolution and extinction time estimates. Adv. Math. Sci. Appl. 24 (2014), 499–534.

[GMR] Y. Giga, M. Muszkieta and P. Rybka, A duality based approach to the minimizing total variation flow in the space H−s. Jpn. J. Ind. Appl. Math. 36 (2019), 261–286.

[GOS] Y. Giga, T. Ohtsuka and R. Schätzle, On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations. In- terfaces Free Bound. 8 (2006), 317–348.

[GP1] Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces. Adv. Differential Equations 21 (2016), 631–698.

[GP2] Y. Giga and N. Požár, Approximation of general facets by regular facets with respect to anisotropic total variation energies and its ap- plication to crystalline mean curvature flow. Comm. Pure Appl. Math. 71 (2018), 1461–1491.

[GP3] Y. Giga and N. Požár, Viscosity solutions for the crystalline mean curvature flow with a nonuniform driving force term. SN Partial Differ. Equ. Appl. (2020), 1:39.

[GU] Y. Giga and Y. Ueda, Numerical computations of split Bregman method for fourth order total variation flow. J. Comput. Phys. 405 (2020), 109114.

[Gir] P. M. Girão, Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature. SIAM J. Numer. Anal. 32 (1995), 886–899.

[GirK] P. M. Girão and R. V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994), 41–70.

[GO] T. Goldstein, S. Osher, The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2 (2009), 323–343.

[Gr] M. A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differential Geom. 26 (1987), 285–314.

[Gu] M. E. Gurtin, Thermomechanics of evolving phase boundaries in the plane. Oxford Mathematical Monographs. The Clarendon Press, Ox- ford University Press, New York, 1993.

[GSS] M. E. Gurtin, H. M. Soner and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles. J. Differential Equations 119 (1995), 54–108.

[H] N. Hamamuki, Asymptotically self-similar solutions to curvature flow equations with prescribed contact angle and their applications to groove profiles due to evaporation-condensation. Adv. Differential Equations 19 (2014), 317–358.

[HZ] R. Hardt and X. Zhou, An evolution problem for linear growth func- tionals. Comm. Partial Differential Equations 19 (1994), 1879–1907.

[HGGD] H. Hontani, M.-H. Giga, Y. Giga and K. Deguchi, Expanding self- similar solutions of a crystalline flow with applications to contour figure analysis. Discrete Appl. Math. 147 (2005), 265–285.

[Hui] G. Huisken, The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

[HI] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom. 59 (2001), 353–437.

[Ik] K. Ishii, An approximation scheme for the anisotropic and nonlocal mean curvature flow. NoDEA Nonlinear Differential Equations Appl. 21 (2014), 219–252.

[IS] K. Ishii and H. M. Soner, Regularity and convergence of crystalline motion. SIAM J. Math. Anal. 30 (1999), 19–37.

[I08] T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena. Japan J. Indust. Appl. Math. 25 (2008), 233–253.

[IJ] T. Ishiwata, On crystalline movement (Japanese). Tohoku University, Mathematical Instutute Lecture Note Series (2008).

[I11a] T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity. Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I, 717–726.

[I11b] T. Ishiwata, On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 865–873.

[I14] T. Ishiwata, Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete Contin. Dyn. Syst. Ser. S 7 (2014) 53–62.

[IO1] T. Ishiwata and T. Ohtsuka, Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete Contin. Dyn. Syst. Ser. B 24 (2019), 5261–5295.

[IO2] T. Ishiwata and T. Ohtsuka, Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete Contin. Dyn. Syst. Ser. S, doi: 10.3934/dcdss.2020390

[IUYY] T. Ishiwata, T. K. Ushijima, H. Yagisita and S. Yazaki, Two exam- ples of nonconvex self-similar solution curves for a crystalline curvature flow. Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), 151–154.

[Ka1] Y. Kashima, A subdifferential formulation of fourth order singular diffusion equations. Adv. Math. Sci. Appl. 14 (2004), 49–74.

[Ka2] Y. Kashima, Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one. J. Funct. Anal. 262 (2012), 2833–2860.

[KK20] I. Kim, D. Kwon, Volume preserving mean curvature flow for star- shaped sets. Calc. Var. Partial Differential Equations 59, Paper No. 81, 40 (2020)

[KKP] I. Kim, D. Kwon, N. Požár, On volume-preserving crystalline mean curvature flow. https://arxiv.org/abs/2012.13839

[Koh] R. V. Kohn, Surface relaxation below the roughening temperature: some recent progress and open questions. Nonlinear partial differential equations 207–221, Abel Symp. 7, Springer, Heidelberg, 2012.

[KO] R. V. Kohn and F. Otto, Upper bounds on coarsening rates. Comm. Math. Phys. 229 (2002), 375–395.

[KV] R. V. Kohn and H. M. Versieux, Numerical analysis of a steepest- descent PDE model for surface relaxation below the roughening tem- perature. SIAM J. Numer. Anal. 48 (2010), 1781–1800.

[Ko] Y. Kōmura, Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19 (1967), 493–507.

[K] R. Kuroda, Facet-creation between two facets moved by crystalline flow or similar equations. Bachelor’s thesis, The University of Tokyo, Tokyo, 2019.

[LS17] T. Laux, D. Swartz, Convergence of thresholding schemes incorpo- rating bulk effects. Interfaces Free Bound. 19, 273–304 (2017)

[L] G. P. Leonardi, An overview on the Cheeger problem, New trends in shape optimization, Internat. Ser. Numer. Math., 166,

Birkhäuser/Springer, Cham, 2015, pp. 117–139

[LLMM] J.-G. Liu, J. Lu, D. Margetis and J. L. Marzuola, Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model. Phys. D 393 (2019), 54–67.

[LS] S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differential Equa- tions 3 (1995), 253–271.

[MWBCS] G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell and R. F. Sekerka, Phase-field models for anisotropic interfaces. Phys. Rev. E (3) 48 (1993), 2016–2024.

[Moll05] J. S. Moll, The anisotropic total variation flow. Math. Ann. 332, 177–218 (2005)

[DSch] P. de Mottoni and M. Schatzman, Geometrical evolution of de- veloped interfaces. Trans. Amer. Math. Soc. 347 (1995), 1533–1589. announcement: Évolution géométrique d’interfaces. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 453–458.

[Mu] P. B. Mucha, Regular solutions to a monodimensional model with discontinuous elliptic operator. Interfaces Free Bound. 14 (2012), 145–152.

[MuR1] P. B. Mucha and P. Rybka, A note on a model system with sudden directional diffusion. J. Stat. Phys. 146 (2012), 975–988.

[MuR2] P. B. Mucha and P. Rybka, Well posedness of sudden directional diffusion equations. Math. Methods Appl. Sci. 36 (2013), 2359–2370.

[MSS16] L. Mugnai, C. Seis, E. Spadaro, Global solutions to the volume- preserving mean-curvature flow. Calc. Var. Partial Differential Equa- tions 55, Art. 18, 23 (2016)

[Mu56] W. W. Mullins, Two-dimensional motion of idealized grain bound- aries. J. Appl. Phys. 27 (1956), 900–904.

[Mu57] W. W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28 (1957), 333–339.

[NP1] M. Novaga, E. Paolini, A computational approach to fractures in crystal growth. Atti Accad. Naz. Lincei Rend. Ci. Sci. Mat. Fis. Natur. 10 (1999), 47–56.

[NP2] M. Novaga, E. Paolini, Stability of crystalline evolutions. Math. Mod- els Methods Appl. Sci. 15 (2005), 921–937.

[OOTT] A. Oberman, S. Osher, R. Takei and R. Tsai, Richard Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation. Commun. Math. Sci. 9 (2011), 637–662.

[O] Y. Ochiai, Facet-creation between two facets moved by crystalline cur- vature. Master’s thesis, The University of Tokyo, Tokyo, 2009.

[Od] I. V. Odisharia, Simulation and analysis of the relaxation of a crys- talline surface. PhD thesis, New York University, New York, 2006.

[OJK] T. Ohta, D. Jasnow and K. Kawasaki, Universal scaling in the motion of a random interface. Phys. Rev. Lett. 49 (1982), 1223-1226.

[OF] S. Osher and R. Fedkiw, Level set methods and dynamic implicit sur- faces. Applied Mathematical Sciences, 153. Springer-Verlag, New York, 2003.

[OS] S. Osher and J. A. Sethian, Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988), 12–49.

[OSV] S. Osher, A. Solé and L. Vese, Image decomposition and restora- tion using total variation minimization and the H−1 norm. Multiscale Model. Simul. 1 (2003), 349–370.

[PP] M. Paolini, F. Pasquarelli, Numerical simulation of crystalline curva- ture flow in 3D by interface diffusion. Free boundary problems: theory and applications, II (Chiba, 1999), 376–389, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakko¯tosho, Tokyo, 2000.

[Po] N. Požár, On the self-similar solutions of the crystalline mean curvature flow in three dimensions, arXiv:1806.02482.

[Se] J. A. Sethian, Level set methods and fast marching methods. Evolv- ing interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Second edition. Cambridge Monographs on Applied and Computational Mathematics, 3. Cambridge University Press, Cambridge, 1999.

[So] H. M. Soner, Motion of a set by the curvature of its boundary. J. Differential Equations 101 (1993), 313–372.

[Sp] H. Spohn, Surface dynamics below the roughening temperature. J. Phys. I. France 3 (1993), 69–81.

[S1] A. Stancu, Uniqueness of self-similar solutions for a crystalline flow. Indiana Univ. Math. J. 45 (1996), 1157–1174.

[S2] A. Stancu, Asymptotic behavior of solutions to a crystalline flow. Hokkaido Math. J. 27 (1998), 303–320.

[T78] J. E. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc. 84 (1978), 568–588.

[T1] J. E. Taylor, Constructions and conjectures in crystalline nondifferen- tial geometry. Differential geometry, 321–336, Pitman Monogr. Sur- veys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991.

[T0] J. E. Taylor, Motion by crystalline curvature, in Computing Optimal Geometries Videotape, J. E. Taylor, ed., Selected Lectures in Mathe- matics, Amer. Math. Soc. (1991), 63–65 plus video.

[T2] J. E. Taylor, Mean curvature and weighted mean curvature. Acta Met- all. Mater. 40 (1992), 1475–1485.

[T3D] J. E. Taylor, Geometric Crystal Growth in 3D via Faceted Interfaces, in Computational Crystal Growers Workshop (Jean E. Taylor, ed.), Selected Lectures in Mathematics, Amer. Math. Soc. (1992), 111–113 plus video.

[T3] J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Differential geometry: partial differen- tial equations on manifolds (Los Angeles, CA, 1990), 417–438, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993.

[TC] J. E. Taylor and J. W. Cahn, Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces. Phys. D 112 (1998), 381–411.

[TCH] J. E. Taylor, J. W. Cahn and A. C. Handwerker, Geometric models of crystal growth. Acta. Metal. 40 (1992), 1443–1474.

[UY] T. K. Ushijima and H. Yagisita, Convergence of a three-dimensional crystalline motion to Gauss curvature flow. Jpn. J. Ind. Appl. Math. 22 (2005), 443–459.

[UYa] T. K. Ushijima and S. Yazaki, Convergence of a crystalline approx- imation for an area-preserving motion. J. Comput. Appl. Math. 166 (2004), 427–452.

[Wa] J. Watanabe, Approximation of nonlinear problems of a certain type. Numerical analysis of evolution equations (Kyoto, 1978), 147–163, Lec- ture Notes Numer. Appl. Anal., 1, Kinokuniya Book Store, Tokyo, 1979.

[WS] A. A. Wheeler and G. B. McFadden, A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics. European J. Appl. Math. 7 (1996), 367–381.

[W] G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Kristallographie 34, 449– 530.

[Ya02] S. Yazaki, On an area-preserving crystalline motion. Calc. Var. Par- tial Differential Equations 14 (2002), 85–105.

[Ya] S. Yazaki, Motion of nonadmissible convex polygons by crystalline cur- vature. Publ. Res. Inst. Math. Sci. 43 (2007), 155–170.

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO-KU, TOKYO 153-8914, JAPAN Email address: labgiga@ms.u-tokyo.ac.jp

FACULTY OF MATHEMATICS AND PHYSICS, INSTITUTE OF SCIENCE AND ENGINEER- ING, KANAZAWA UNIVERSITY, KAKUMA, KANAZAWA 920-1192, JAPAN Email address: npozar@se.kanazawa-u.ac.jp

参考文献をもっと見る