リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Resonances for semiclassical matrix Schrödinger operators created by non-trapping trajectories」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Resonances for semiclassical matrix Schrödinger operators created by non-trapping trajectories

樋口 健太 立命館大学 DOI:info:doi/10.34382/00016912

2022.05.12

概要

Quantum resonances of a Schrödinger operator are defined to be the poles of the resolvent. Each resonance is associated with a quasi-bound state, and its imaginary part (called width) describes the reciprocal of the half lifetime of the state. In the semiclassical limit, where the Plank constant ℏ tends to 0 as a small parameter, it is expected to recover the underlying classical mechanics (Bohr's correspondence principle). The study of the asymptotic distribution of resonances has been developed since 1980's in relation with the underlying classical dynamics. In particular, the non-existence of resonances near a non- trapping real energy was proved in 1987 by Helffer and Sjöstrand for analytic potentials (a real energy is said to be non-trapping when any classical trajectory on the energy surface goes to infinity as time goes to plus and minus infinity). This theorem was extended to smooth potentials by width of order ℏ log(1/ℏ).

The author found that this is not the case in general for matrix Schrödinger operators. He studied a one dimensional 2 × 2 Born-Oppenheimer approximation model, where the diagonal entries consist of two Schrödinger operators while the anti-diagonals are small interactions. He showed the existence and the precise asymptotic distribution of resonances with width of order ℏ log(1/ℏ) near an energy non- trapping for both Schrödinger operators. These resonances are created by a periodic trajectory composed by two non-trapping classical trajectories in the phase space. Such a phenomenon is due to a so-called energy-level crossing, which is a typical and important subject in quantum chemistry for the study of molecular predissociation and non-adiabatic transition.

The aim of this thesis is to present two approaches to this problem. One is a classical approach, and the other is a microlocal approach. The classical approach consists of the construction of local solutions on both side of the crossing point and compute the Wronskian of these solutions. On the other hand, the microlocal approach reduces the problem to the study of the transfer matrix at a crossing point in the phase space which permits us to know the microlocal behavior of solutions on the outgoing trajectories in terms of that on the incoming trajectories. In addition to the results in his previous work, we supply this thesis with further developments. The general case where two classical trajectories make a graph structure with finitely many crossings of finite order degeneracy is discussed.

参考文献

[1] J. Aguilar, J.M. Combes : A class of analytic perturbations for one-body Schrödinger Hamil- tonians. Comm. Math. Phys., 22 (1971), no. 4, 269–279.

[2] S. Ashida : Molecular predissociation resonances below an energy level crossing. Asymptot. Anal. 107 (2018), no. 3-4, 135–167.

[3] M. Assal : Semiclassical resolvent estimates for Schrödinger operators with matrix-valued potentials and applications. work in progress.

[4] M. Assal, M. Dimassi, S. Fujiié : Semiclassical trace formula and spectral shift function for systems via a stationary approach. Int. Math. Res. Notices, (2019) 4, 1227–1264.

[5] M. Assal, S. Fujiié : Eigenvalue Splitting of Polynomial Order for a System of Schrödinger Operators with Energy-Level Crossing. Commun. Math. Phys., 386, 1519–1550 (2021).

[6] H. Baklouti : Asymptotique des largeurs de résonances pour un mod`ele d’effet tunnel mi- crolocal. Ann. Inst. H. Poincare Phys. Theor., 68 (1998); no. 2, 179–228.

[7] P. Briet, J. M. Combes, P. Duclos : On the location of resonances for Schrödinger operators in the semiclassical limit I: Resonances free domains, J. Math. Anal. Appl. 126 (1987), 90–99.

[8] J.-F. Bony, S. Fujiié, T. Ramond, M. Zerzeri : Microlocal kernel of pseudodifferential oper- ators at a hyperbolic fixed point. J. Funct. Anal. 252 (2007) no. 1, 68–125.

[9] J.-F. Bony, S. Fujiié, T. Ramond, M. Zerzeri : Barrier-top resonances for non globally analytic potentials. J. Spectr. Theory, 9 (2019), no. 1, 315–348.

[10] J.-F. Bony, S. Fujiié, T. Ramond, M. Zerzeri : Resonances for Homoclinic Trapped Sets. Astérisque Bofuraze, Société Mathématique de France, 2018.

[11] Y. Colin de Verdiére : Bohr-Sommerfeld phases for avoided crossings. Preprint 2006, hal- 00574571, https://hal.archives-ouvertes.fr/hal-00574571.

[12] Y. Colin de Verdiére, B. Parisse : E´quilbre instable en régime semi-classique: I-Concentration microlocale. Commun. In PDE, 19 (9–10), 1535–1563 (1994).

[13] M. Dimassi, S. Sjöstrand : Spectral Asymptotics in the Semi-Classical Limit. Cambridge University Press, 1999.

[14] S. Dyatlov, M. Zworski : Mathematical Theory of Scattering Resonances. Graduate Studies in Mathematics, 200. American Mathematical Soc., 2019.

[15] M.V. Fedryuk : Asymptotic Analysis, Springer-Verlag, Moscow, 1983.

[16] S. Fujiié, A. Martinez, T. Watanabe : Molecular predissociation resonances near an energy- level crossing I: Elliptic interaction. J. Diff. Eq. 260 (2016) 4051-4085.

[17] S. Fujiié, A. Martinez, T. Watanabe : Molecular predissociation resonances near an energy- level crossing II: Vector field interaction. J. Diff. Eq. 262 (2017) 5880-5895.

[18] S. Fujiié, A. Martinez, T. Watanabe : Widths of resonances above an energy-level crossing. J. Funct. Anal., vol. 280 no. 6 (2021).

[19] C. Gérard, A. Martinez : Principe d’absorption limite pour les opérateurs de Schrödinger `a longue portée. C. R. Acad. sci. Paris, 306 (1988), 121–123.

[20] C. Gérard, J. Sjöstrand : Semiclassical Resonances Generated by a Closed Trajectory of Hyperbolic type, Comm. Math. Phys., 108 (1987), 391–421.

[21] B. Helffer, A. Martinez : Comparaison entre les diverses notions de résonances. Helv. Phys. Acta, 60 (1987), no. 8, 992-1003.

[22] B. Helffer, J. Sjöstrand : Résonances en limite semiclassique. Bull. Soc. Math. France, Mémoire, No. 24-25,1986.

[23] B. Helffer, J. Sjöstrand : Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum. Mém. Soc. Math. France, no. 39 (1989), 1–124.

[24] K. Higuchi : Resonances free domain for systems of Schrödinger operators with energy-level crossings, Rev. Math. Phys., 33 (2021), no.3 article no. 2150007.

[25] K. Higuchi : Résonances semiclassiques engendrées par des croisements de trajectoires clas- siques, C. R. Acad. Sci. Paris Sér. I Math., (2021), vol. 359, no 6, 657–663.

[26] L. Hörmander : The Analysis of Linear Partial Differential Operators I: Distribution theory and Fourier analysis, Springer Grundlehren der Math., 1974.

[27] W. Hunziker : Distortion analyticity and molecular resonance curves. Annales de l’I.H.P. Physique théorique, Tome 45 (1986) no. 4, pp. 339-358.

[28] M. Klein, A. Martinez, R. Seiler, X.W. Wang : On the Born-Oppenheimer expansion for polyatomic molecules. Comm. Math. Physics, 143 (1992), no. 3, 607-639.

[29] A. Martinez : Resonance free domains for non globally analytic potentials. Annales Henri Poincaré, (2002), vol. 3, 739–756.

[30] A. Martinez : An Introduction to Semiclassical and Microlocal Analysis. Springer-Verlag New-York, UTX Series, 2002.

[31] S. Nakamura : On an example of phase-space tunneling. Ann. Inst. H. Poincare Phys. Theor., 63 (1995), no. 2, 211-229.

[32] F. W. J. Olver : Asymptotics and Special Functions (Second Ed.), Academic Press New York, 1997.

[33] P. Pettersson : WKB expansions for systems of Schrödinger operators with crossing eigen- values. Asymptot. Anal., 14 (1997) 1–48.

[34] M. Reed, B. Simon : Methods of Modern Mathematical Physics, Vol. I-IV. Academic Press New York, 1972.

[35] J. Sjöstrand : Semiclassical resonances generated by non-degenerate critical points, Pseudo- differential operators, Lecture note in Mathematics, vol. 1256, Springer, 1987, p. 402–429.

[36] J. Sjöstrand : Density of states oscillations for magnetic Schrödinger operators. Mathematics in Science and Engineering, Volume 186, 1992, Pages 295–345.

[37] J. Sjöstrand : Projecteurs adiabatiques du point de vue pseudodifférentiel. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 2, 217–220.

[38] J. Sjöstrand, M. Zworski : Fractal upper bounds on the density of semiclassical resonances. Duke Math. J. 137, no. 3 (2007), 381–459.

[39] J. Sjöstrand, M. Zworski : Quantum monodromy and semi-classical trace formulae. Journal de mathématiques pures et appliquées 81.1 (2002), 1–33.

[40] D.R. Yafaev : The semiclassical limit of eigenfunctions of the Schrödinger equation and the Bohr-Sommerfeld quantization condition, revisited, St. Petersburg Math. J., 22 (2011), no. 6, 1051–1067.

[41] M. Zworski : Semiclassical Analysis, American Mathematical Soc., 2012.

参考文献をもっと見る