リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the mosquito-borne flavivirus serology useful for diagnosis of flavivirus infections」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the mosquito-borne flavivirus serology useful for diagnosis of flavivirus infections

田畑, 耕史郎 北海道大学

2023.03.23

概要

Flavivirus is an enveloped RNA virus, including TBFVs, MBFVs, and ISFVs. TBFVs
and MBFVs infect vertebrates sometimes producing disease. ISFVs are phylogenetically
divided into lineage I (also called classical ISFV) and lineage II. In phylogenetic analyses,
lineage II ISFVs cluster with the MBFVs [53]. Therefore, lineage II ISFVs are considered to
be dual-host affiliated ISFVs, which may be transmitted to mammals other than mosquitoes,
as are MBFVs [50, 54]. However, there have been no reports of lineage II ISFVs infecting
vertebrate cells under natural conditions [55, 56].
Flaviviruses have positive-sense, single-stranded RNA genomes encoding a
polyprotein composed of structural and nonstructural proteins [4]. Reaction analyses using
antibodies against the structural protein of MBFVs have demonstrated that those antibodies
are mutually cross-reactive among MBFVs, especially DENV, ZIKV, JEV, and WNV [46, 47,
57-59]. These studies suggest that structural proteins are conserved among these MBFVs.
Recently, hemagglutination inhibition assays and reaction analyses using a panel of antilineage II ISFV monoclonal antibodies showed that lineage II ISFV also possessed
antigenically similar structural proteins to MBFVs [50-52].
The lineage II ISFVs are phylogenetically further divided into lineage IIa and IIb, and
lineage IIa ISFVs seem to be associated Aedes species [60]. While the antigenic relationship
between lineage II ISFV and MBFV have been investigated, the characterization of lineage
IIa and IIb ISFVs compared with MBFVs are still poorly understood. In this study, antibodybased analyses were performed using anti-lineage IIa and IIb ISFV sera to MBFV antigens
to identify antigenic similarity among lineage IIa and IIb ISFVs, and the MBFVs. Therefore,
two lineage II ISFVs, Psorophora flavivirus (PSFV, lineage IIa ISFV) isolated from
Psorophora albigenu in Bolivia, and Barkedji virus (BJV, lineage IIb ISFV) isolated from
Culex spp. in Zambia, were used [54, 60]. ...

この論文で使われている画像

参考文献

1.

Guarner J, Hale GL (2019) Four human diseases with significant public health impact caused

by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever. Semin Diagn Pathol

36:170-176

2.

Pierson TC, Diamond MS (2020) The continued threat of emerging flaviviruses. Nat

Microbiol 5:796-812

3.

Krol E, Brzuska G, Szewczyk B (2019) Production and Biomedical Application of Flaviviruslike Particles. Trends Biotechnol 37:1202-1216

4.

Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R (2018) Rewiring cellular networks by

members of the Flaviviridae family. Nat Rev Microbiol 16:125-142

5.

Daep CA, Munoz-Jordan JL, Eugenin EA (2014) Flaviviruses, an expanding threat in public

health: focus on dengue, West Nile, and Japanese encephalitis virus. J Neurovirol 20:539-560

6.

Hombach J, Barrett AD, Cardosa MJ, Deubel V, Guzman M, Kurane I, Roehrig JT, Sabchareon

A, Kieny MP (2005) Review on flavivirus vaccine development. Proceedings of a meeting

jointly organised by the World Health Organization and the Thai Ministry of Public Health,

26-27 April 2004, Bangkok, Thailand. Vaccine 23:2689-2695

7.

Andersen LK, Davis MD (2017) Climate change and the epidemiology of selected tick-borne

and mosquito-borne diseases: update from the International Society of Dermatology Climate

Change Task Force. Int J Dermatol 56:252-259

8.

Gould EA, Higgs S (2009) Impact of climate change and other factors on emerging arbovirus

diseases. Trans R Soc Trop Med Hyg 103:109-121

9.

Harrigan RJ, Thomassen HA, Buermann W, Smith TB (2014) A continental risk assessment

of West Nile virus under climate change. Glob Chang Biol 20:2417-2425

10.

Munoz AG, Thomson MC, Goddard L, Aldighieri S (2016) Analyzing climate variations at

multiple timescales can guide Zika virus response measures. Gigascience 5:1-6

11.

Zell R, Krumbholz A, Wutzler P (2008) Impact of global warming on viral diseases: what is

the evidence? Curr Opin Biotechnol 19:652-660

12.

Paz S (2015) Climate change impacts on West Nile virus transmission in a global context.

Philos Trans R Soc Lond B Biol Sci 370

13.

Semenza JC, Rocklov J, Ebi KL (2022) Climate Change and Cascading Risks from Infectious

Disease. Infect Dis Ther 11:1371-1390

14.

Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, HoeghGuldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature

416:389-395

15.

Waller C, Tiemensma M, Currie BJ, Williams DT, Baird RW, Krause VL (2022) Japanese

Encephalitis in Australia - A Sentinel Case. N Engl J Med 387:661-662

16.

Yakob L, Hu W, Frentiu FD, Gyawali N, Hugo LE, Johnson B, Lau C, Furuya-Kanamori L,

Magalhaes RS, Devine G (2022) Japanese encephalitis emergence in Australia: the potential

50

population at risk. Clin Infect Dis

17.

Marchand E, Prat C, Jeannin C, Lafont E, Bergmann T, Flusin O, Rizzi J, Roux N, Busso V,

Deniau J, Noel H, Vaillant V, Leparc-Goffart I, Six C, Paty MC (2013) Autochthonous case of

dengue in France, October 2013. Euro Surveill 18:20661

18.

Kobayashi D, Murota K, Fujita R, Itokawa K, Kotaki A, Moi ML, Ejiri H, Maekawa Y, Ogawa

K, Tsuda Y, Sasaki T, Kobayashi M, Takasaki T, Isawa H, Sawabe K (2018) Dengue Virus

Infection in Aedes albopictus during the 2014 Autochthonous Dengue Outbreak in Tokyo

Metropolis, Japan. Am J Trop Med Hyg 98:1460-1468

19.

Misra UK, Kalita J (2010) Overview: Japanese encephalitis. Prog Neurobiol 91:108-120

20.

Sharma S, Mathur A, Prakash V, Kulshreshtha R, Kumar R, Chaturvedi UC (1991) Japanese

encephalitis virus latency in peripheral blood lymphocytes and recurrence of infection in

children. Clin Exp Immunol 85:85-89

21.

Chancey C, Grinev A, Volkova E, Rios M (2015) The global ecology and epidemiology of West

Nile virus. Biomed Res Int 2015:376230

22.

Hayes EB, O'Leary DR (2004) West Nile virus infection: a pediatric perspective. Pediatrics

113:1375-1381

23.

Slavov SN, Otaguiri KK, Kashima S, Covas DT (2016) Overview of Zika virus (ZIKV)

infection in regards to the Brazilian epidemic. Braz J Med Biol Res 49:e5420

24.

Brasil P, Pereira JP, Jr., Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M,

Rabello RS, Valderramos SG, Halai UA, Salles TS, Zin AA, Horovitz D, Daltro P, Boechat M,

Raja Gabaglia C, Carvalho de Sequeira P, Pilotto JH, Medialdea-Carrera R, Cotrim da Cunha

D, Abreu de Carvalho LM, Pone M, Machado Siqueira A, Calvet GA, Rodrigues Baiao AE,

Neves ES, Nassar de Carvalho PR, Hasue RH, Marschik PB, Einspieler C, Janzen C, Cherry

JD, Bispo de Filippis AM, Nielsen-Saines K (2016) Zika Virus Infection in Pregnant Women

in Rio de Janeiro. N Engl J Med 375:2321-2334

25.

Salvador FS, Fujita DM (2016) Entry routes for Zika virus in Brazil after 2014 world cup: New

possibilities. Travel Med Infect Dis 14:49-51

26.

Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC (2011) Fever from the forest:

prospects for the continued emergence of sylvatic dengue virus and its impact on public health.

Nat Rev Microbiol 9:532-541

27.

Whitehead SS, Blaney JE, Durbin AP, Murphy BR (2007) Prospects for a dengue virus vaccine.

Nat Rev Microbiol 5:518-528

28.

Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science

239:476-481

29.

Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses.

Adv Virus Res 60:421-467

30.

Anderson KB, Gibbons RV, Thomas SJ, Rothman AL, Nisalak A, Berkelman RL, Libraty DH,

Endy TP (2011) Preexisting Japanese encephalitis virus neutralizing antibodies and increased

51

symptomatic dengue illness in a school-based cohort in Thailand. PLoS Negl Trop Dis

5:e1311

31.

Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris

E (2017) Antibody-dependent enhancement of severe dengue disease in humans. Science

358:929-932

32.

Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, Ampie O, Elizondo D,

Miranda T, Bustos Carillo F, Mercado JC, Latta K, Schiller A, Segovia-Chumbez B, Ojeda S,

Sanchez N, Plazaola M, Coloma J, Halloran ME, Premkumar L, Gordon A, Narvaez F, de Silva

AM, Kuan G, Balmaseda A, Harris E (2020) Zika virus infection enhances future risk of severe

dengue disease. Science 369:1123-1128

33.

Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, GalarzaMunoz G, McGrath EL, Urrabaz-Garza R, Gao J, Wu P, Menon R, Saade G, Fernandez-Salas

I, Rossi SL, Vasilakis N, Routh A, Bradrick SS, Garcia-Blanco MA (2016) A Screen of FDAApproved Drugs for Inhibitors of Zika Virus Infection. Cell Host Microbe 20:259-270

34.

Boldescu V, Behnam MAM, Vasilakis N, Klein CD (2017) Broad-spectrum agents for flaviviral

infections: dengue, Zika and beyond. Nat Rev Drug Discov 16:565-586

35.

Kok WM (2016) New developments in flavivirus drug discovery. Expert Opin Drug Discov

11:433-445

36.

Stiasny K, Aberle JH, Chmelik V, Karrer U, Holzmann H, Heinz FX (2012) Quantitative

determination of IgM antibodies reduces the pitfalls in the serodiagnosis of tick-borne

encephalitis. J Clin Virol 54:115-120

37.

Kauffman EB, Kramer LD (2017) Zika Virus Mosquito Vectors: Competence, Biology, and

Vector Control. J Infect Dis 216:S976-S990

38.

Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, Oviedo MN, Lacroix R,

Naish N, Morrison NI, Collado A, Stevenson J, Scaife S, Dafa'alla T, Fu G, Phillips C, Miles

A, Raduan N, Kelly N, Beech C, Donnelly CA, Petrie WD, Alphey L (2012) Successful

suppression of a field mosquito population by sustained release of engineered male

mosquitoes. Nat Biotechnol 30:828-830

39.

Gabrieli P, Smidler A, Catteruccia F (2014) Engineering the control of mosquito-borne

infectious diseases. Genome Biol 15:535

40.

Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, Beech C, Petrie WD,

Alphey L (2011) Field performance of engineered male mosquitoes. Nat Biotechnol 29:10341037

41.

Sabet A, Goddard J (2022) Promise or Peril: Using Genetically Modified Mosquitoes in the

Fight Against Vector-Borne Disease. Am J Med 135:281-283

42.

Maezono K, Kobayashi S, Tabata K, Yoshii K, Kariwa H (2021) Development of a highly

specific serodiagnostic ELISA for West Nile virus infection using subviral particles. Sci Rep

11:9213

52

43.

Inagaki E, Sakai M, Hirano M, Muto M, Kobayashi S, Kariwa H, Yoshii K (2016) Development

of a serodiagnostic multi-species ELISA against tick-borne encephalitis virus using subviral

particles. Ticks Tick Borne Dis 7:723-729

44.

Martin DA, Muth DA, Brown T, Johnson AJ, Karabatsos N, Roehrig JT (2000)

Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for

routine diagnosis of arboviral infections. J Clin Microbiol 38:1823-1826

45.

Kuno G (2003) Serodiagnosis of flaviviral infections and vaccinations in humans. Adv Virus

Res 61:3-65

46.

Crill WD, Chang GJ (2004) Localization and characterization of flavivirus envelope

glycoprotein cross-reactive epitopes. J Virol 78:13975-13986

47.

Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W,

Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P,

Mongkolsapaya J, Screaton G (2010) Cross-reacting antibodies enhance dengue virus

infection in humans. Science 328:745-748

48.

Rathore APS, St John AL (2020) Cross-Reactive Immunity Among Flaviviruses. Front

Immunol 11:334

49.

Tabata K, Itakura Y, Toba S, Uemura K, Kishimoto M, Sasaki M, Harrison JJ, Sato A, Hall WW,

Hall RA, Sawa H, Orba Y (2022) Serological characterization of lineage II insect-specific

flaviviruses compared with pathogenic mosquito-borne flaviviruses. Biochem Biophys Res

Commun 616:115-121

50.

Auguste AJ, Langsjoen RM, Porier DL, Erasmus JH, Bergren NA, Bolling BG, Luo H, Singh

A, Guzman H, Popov VL, Travassos da Rosa APA, Wang T, Kang L, Allen IC, Carrington CVF,

Tesh RB, Weaver SC (2021) Isolation of a novel insect-specific flavivirus with

immunomodulatory effects in vertebrate systems. Virology 562:50-62

51.

Guzman H, Contreras-Gutierrez MA, Travassos da Rosa APA, Nunes MRT, Cardoso JF,

Popov VL, Young KI, Savit C, Wood TG, Widen SG, Watts DM, Hanley KA, Perera D, Fish

D, Vasilakis N, Tesh RB (2018) Characterization of Three New Insect-Specific Flaviviruses:

Their Relationship to the Mosquito-Borne Flavivirus Pathogens. Am J Trop Med Hyg 98:410419

52.

Harrison JJ, Hobson-Peters J, Colmant AMG, Koh J, Newton ND, Warrilow D, BielefeldtOhmann H, Piyasena TBH, O'Brien CA, Vet LJ, Paramitha D, Potter JR, Davis SS, Johansen

CA, Setoh YX, Khromykh AA, Hall RA (2020) Antigenic Characterization of New Lineage II

Insect-Specific Flaviviruses in Australian Mosquitoes and Identification of Host Restriction

Factors. mSphere 5

53.

Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D,

Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama

E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR,

Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA (2019) A recombinant platform

53

for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl

Med 11

54.

Wastika CE, Harima H, Sasaki M, Hang'ombe BM, Eshita Y, Qiu Y, Hall WW, Wolfinger MT,

Sawa H, Orba Y (2020) Discoveries of Exoribonuclease-Resistant Structures of InsectSpecific Flaviviruses Isolated in Zambia. Viruses 12

55.

Piyasena TBH, Newton ND, Hobson-Peters J, Vet LJ, Setoh YX, Bielefeldt-Ohmann H,

Khromykh AA, Hall RA (2019) Chimeric viruses of the insect-specific flavivirus Palm Creek

with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of

insect-specific flaviviruses in vertebrate cells. J Gen Virol 100:1580-1586

56.

Colmant AMG, Hobson-Peters J, Slijkerman TAP, Harrison JJ, Pijlman GP, van Oers MM,

Simmonds P, Hall RA, Fros JJ (2021) Insect-Specific Flavivirus Replication in Mammalian

Cells Is Inhibited by Physiological Temperature and the Zinc-Finger Antiviral Protein. Viruses

13

57.

Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA,

Krysztof D, Tortorella D, Stramer SL, Garcia-Sastre A, Krammer F, Lim JK (2017)

Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science

356:175-180

58.

Garg H, Yeh R, Watts DM, Mehmetoglu-Gurbuz T, Resendes R, Parsons B, Gonzales F, Joshi

A (2021) Enhancement of Zika virus infection by antibodies from West Nile virus seropositive

individuals with no history of clinical infection. BMC Immunol 22:5

59.

Saito Y, Moi ML, Takeshita N, Lim CK, Shiba H, Hosono K, Saijo M, Kurane I, Takasaki T

(2016) Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement

antibody in adults. BMC Infect Dis 16:578

60.

Orba Y, Matsuno K, Nakao R, Kryukov K, Saito Y, Kawamori F, Loza Vega A, Watanabe T,

Maemura T, Sasaki M, Hall WW, Hall RA, Pereira JA, Nakagawa S, Sawa H (2021) Diverse

mosquito-specific flaviviruses in the Bolivian Amazon basin. J Gen Virol 102

61.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary

Genetics Analysis across Computing Platforms. Mol Biol Evol 35:1547-1549

62.

Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic

tree display and annotation. Nucleic Acids Res 49:W293-W296

63.

Clark DC, Lobigs M, Lee E, Howard MJ, Clark K, Blitvich BJ, Hall RA (2007) In situ reactions

of monoclonal antibodies with a viable mutant of Murray Valley encephalitis virus reveal an

absence of dimeric NS1 protein. J Gen Virol 88:1175-1183

64.

Sasaki M, Anindita PD, Phongphaew W, Carr M, Kobayashi S, Orba Y, Sawa H (2018)

Development of a rapid and quantitative method for the analysis of viral entry and release

using a NanoLuc luciferase complementation assay. Virus Res 243:69-74

65.

Slon Campos JL, Poggianella M, Marchese S, Mossenta M, Rana J, Arnoldi F, Bestagno M,

Burrone OR (2017) DNA-immunisation with dengue virus E protein domains I/II, but not

54

domain III, enhances Zika, West Nile and Yellow Fever virus infection. PLoS One

12:e0181734

66.

Blitvich BJ, Firth AE (2015) Insect-specific flaviviruses: a systematic review of their discovery,

host range, mode of transmission, superinfection exclusion potential and genomic

organization. Viruses 7:1927-1959

67.

Berneck BS, Rockstroh A, Fertey J, Grunwald T, Ulbert S (2020) A Recombinant Zika Virus

Envelope Protein with Mutations in the Conserved Fusion Loop Leads to Reduced Antibody

Cross-Reactivity upon Vaccination. Vaccines (Basel) 8

68.

Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J, Edupuganti S,

Pattanapanyasat K, Chokephaibulkit K, Mulligan MJ, Wilson PC, Ahmed R, Suthar MS,

Wrammert J (2016) Human antibody responses after dengue virus infection are highly crossreactive to Zika virus. Proc Natl Acad Sci U S A 113:7852-7857

69.

Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ (2007) Monoclonal antibodymediated enhancement of dengue virus infection in vitro and in vivo and strategies for

prevention. Proc Natl Acad Sci U S A 104:9422-9427

70.

Mansfield KL, Horton DL, Johnson N, Li L, Barrett ADT, Smith DJ, Galbraith SE, Solomon

T, Fooks AR (2011) Flavivirus-induced antibody cross-reactivity. J Gen Virol 92:2821-2829

71.

Allwinn R, Doerr HW, Emmerich P, Schmitz H, Preiser W (2002) Cross-reactivity in flavivirus

serology: new implications of an old finding? Med Microbiol Immunol 190:199-202

72.

Chiou SS, Crill WD, Chen LK, Chang GJ (2008) Enzyme-linked immunosorbent assays using

novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of

flavivirus infections. Clin Vaccine Immunol 15:825-835

73.

Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX (2018) The bright and the dark side of

human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 19:206-224

74.

Huang KJ, Yang YC, Lin YS, Huang JH, Liu HS, Yeh TM, Chen SH, Liu CC, Lei HY (2006)

The dual-specific binding of dengue virus and target cells for the antibody-dependent

enhancement of dengue virus infection. J Immunol 176:2825-2832

75.

de Alwis R, Williams KL, Schmid MA, Lai CY, Patel B, Smith SA, Crowe JE, Wang WK, Harris

E, de Silva AM (2014) Dengue viruses are enhanced by distinct populations of serotype crossreactive antibodies in human immune sera. PLoS Pathog 10:e1004386

76.

Gunawardana SA, Shaw RH (2018) Cross-reactive dengue virus-derived monoclonal

antibodies to Zika virus envelope protein: Panacea or Pandora's box? BMC Infect Dis 18:641

77.

Vogt MR, Dowd KA, Engle M, Tesh RB, Johnson S, Pierson TC, Diamond MS (2011) Poorly

neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope

protein protect in vivo via Fcgamma receptor and complement-dependent effector

mechanisms. J Virol 85:11567-11580

78.

Roehrig JT, Bolin RA, Kelly RG (1998) Monoclonal antibody mapping of the envelope

glycoprotein of the dengue 2 virus, Jamaica. Virology 246:317-328

55

79.

Stiasny K, Kiermayr S, Holzmann H, Heinz FX (2006) Cryptic properties of a cluster of

dominant flavivirus cross-reactive antigenic sites. J Virol 80:9557-9568

80.

Sukupolvi-Petty S, Austin SK, Purtha WE, Oliphant T, Nybakken GE, Schlesinger JJ, Roehrig

JT, Gromowski GD, Barrett AD, Fremont DH, Diamond MS (2007) Type- and subcomplexspecific neutralizing antibodies against domain III of dengue virus type 2 envelope protein

recognize adjacent epitopes. J Virol 81:12816-12826

81.

Rockstroh A, Moges B, Barzon L, Sinigaglia A, Palu G, Kumbukgolla W, Schmidt-Chanasit J,

Sarno M, Brites C, Moreira-Soto A, Drexler JF, Ferreira OC, Ulbert S (2017) Specific

detection of dengue and Zika virus antibodies using envelope proteins with mutations in the

conserved fusion loop. Emerg Microbes Infect 6:e99

82.

Kam YW, Leite JA, Amrun SN, Lum FM, Yee WX, Bakar FA, Eng KE, Lye DC, Leo YS, Chong

CY, Freitas ARR, Milanez GP, Proenca-Modena JL, Renia L, Costa FTM, Ng LFP, ZikaUnicamp N (2019) ZIKV-Specific NS1 Epitopes as Serological Markers of Acute Zika Virus

Infection. J Infect Dis 220:203-212

83.

Wan J, Wang T, Xu J, Ouyang T, Wang Q, Zhang Y, Weng S, Li Y, Wang Y, Xin X, Wang X, Li

S, Kong L (2021) Novel Japanese encephalitis virus NS1-based vaccine: Truncated NS1 fused

with E. coli heat labile enterotoxin B subunit. EBioMedicine 67:103353

84.

Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, Rouvinski A, Jumnainsong A,

Edwards C, Quyen NTH, Duangchinda T, Grimes JM, Tsai WY, Lai CY, Wang WK, Malasit

P, Farrar J, Simmons CP, Zhou ZH, Rey FA, Mongkolsapaya J, Screaton GR (2015) A new

class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected

with dengue virus. Nat Immunol 16:170-177

85.

Tsai WY, Lai CY, Wu YC, Lin HE, Edwards C, Jumnainsong A, Kliks S, Halstead S,

Mongkolsapaya J, Screaton GR, Wang WK (2013) High-avidity and potently neutralizing

cross-reactive human monoclonal antibodies derived from secondary dengue virus infection.

J Virol 87:12562-12575

86.

Dai L, Xu K, Li J, Huang Q, Song J, Han Y, Zheng T, Gao P, Lu X, Yang H, Liu K, Xia Q, Wang

Q, Chai Y, Qi J, Yan J, Gao GF (2021) Protective Zika vaccines engineered to eliminate

enhancement of dengue infection via immunodominance switch. Nat Immunol 22:958-968

87.

Chabierski S, Barzon L, Papa A, Niedrig M, Bramson JL, Richner JM, Palu G, Diamond MS,

Ulbert S (2014) Distinguishing West Nile virus infection using a recombinant envelope

protein with mutations in the conserved fusion-loop. BMC Infect Dis 14:246

88.

Urakami A, Ngwe Tun MM, Moi ML, Sakurai A, Ishikawa M, Kuno S, Ueno R, Morita K,

Akahata W (2017) An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine

Has Implications for Flavivirus Vaccine Design. J Virol 91

89.

Slon-Campos JL, Dejnirattisai W, Jagger BW, Lopez-Camacho C, Wongwiwat W, Durnell LA,

Winkler ES, Chen RE, Reyes-Sandoval A, Rey FA, Diamond MS, Mongkolsapaya J, Screaton

GR (2019) A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate

56

antibody-dependent enhancement of dengue infection. Nat Immunol 20:1291-1298

90.

Henchal EA, Gentry MK, McCown JM, Brandt WE (1982) Dengue virus-specific and

flavivirus group determinants identified with monoclonal antibodies by indirect

immunofluorescence. Am J Trop Med Hyg 31:830-836

91.

Pantoja P, Perez-Guzman EX, Rodriguez IV, White LJ, Gonzalez O, Serrano C, Giavedoni L,

Hodara V, Cruz L, Arana T, Martinez MI, Hassert MA, Brien JD, Pinto AK, de Silva A, Sariol

CA (2017) Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity

to dengue virus. Nat Commun 8:15674

92.

Willis E, Hensley SE (2017) Characterization of Zika virus binding and enhancement potential

of a large panel of flavivirus murine monoclonal antibodies. Virology 508:1-6

93.

Okuya K, Hattori T, Saito T, Takadate Y, Sasaki M, Furuyama W, Marzi A, Ohiro Y, Konno S,

Hattori T, Takada A (2022) Multiple Routes of Antibody-Dependent Enhancement of SARSCoV-2 Infection. Microbiol Spectr 10:e0155321

94.

Takada A, Ebihara H, Feldmann H, Geisbert TW, Kawaoka Y (2007) Epitopes required for

antibody-dependent enhancement of Ebola virus infection. J Infect Dis 196 Suppl 2:S347-356

57

Summary in Japanese

病原性蚊媒介性フラビウイルス(MBFV)は、異なるウイルス種間で構造タン

パク質のアミノ酸配列が高度に保存されている。そのため、これらの構造タンパク

質を認識する抗体は、交差反応性を示す。その交差反応性抗体は、幅広いフラビウ

イルスの構造タンパク質に結合するため、ウイルス種特異的な抗体を検出可能な血

清診断法は未だ開発されていない。本研究では、これまで報告されてきた MBFV 間

ではなく、MBFV と昆虫特異的フラビウイルス(ISFV)間の抗原性を比較し、異な

る抗原性を有するウイルスアミノ酸配列を用いて、交差反応性抗体の非特異的な結

合を低減させるウイルス抗原作出を試みた。

第一章

MBFV と比較した lineage II ISFV の血清学的性状解析

第一章では、分子系統学的に MBFV に近縁な lineage II ISFV の構造タンパク

質の抗原性を MBFV の構造タンパク質と比較した。まず、系統樹解析を実施した結

果、lineage II ISFV は lineage IIa ISFV と lineage IIb ISFV にクラスターが別れること

が明らかになった。そこで、これら二種類の lineage II ISFV の抗原性をそれぞれの

ウイルスに対する抗血清を用いて評価した。これまでに所属研究室で分離してきた

lineage IIa ISFV である PSFV と lineage IIb ISFV である BJV をマウスに免疫するこ

とにより、抗血清を作出した。それらの抗血清は一部の MBFV(DENV:デングウイ

ルス、ZIKV:ジカウイルス、JEV:日本脳炎ウイルスおよび WNV:ウエストナイルウイ

ルス)の感染細胞抗原に対し結合活性を示し、更に、それらの抗体は、フラビウイ

ルス感染症で問題となっている抗体依存性感染増強(ADE)活性をそれぞれの

MBFV に対して有していることを示した。また、PSFV 及び BJV に対する抗血清間

で、MBFV の ADE 活性が異なることも明らかにした。本結果から、lineage IIa ISFV

と lineage IIb ISFV では、抗原性が異なることが示唆され、lineage IIa ISFV である

PSFV と lineage IIb ISFV である BJV が MBFV(DENV、ZIKV、JEV 及び WNV)と

類似した抗原性の構造タンパク質を有していることを示した。本結果により、MBFV

感染歴のある患者が、ISFV 感染蚊に吸血されることにより、MBFV に対する抗体

が再活性化され、更にその抗体が ADE を誘導する可能性が示唆された。しかしな

がら、ISFV が感染した蚊の吸血により吸血対象へウイルスが導入されるかについ

ては不明であるため今後、更なる研究が必要である。

58

第二章

フラビウイルス種特異的な抗体の検出及び誘導を可能にするウイルスタ

ンパク質デザイン

第二章では、MBFV、lineage II ISFV 及び lineage I ISFV の fusion loop(FL)ド

メインの抗原性を利用した交差反応を低減させるウイルスタンパク質の創出を試

みた。FL ドメインは、異なるフラビウイルス種間で高度に保存されており、抗 FL

抗体は幅広いフラビウイルスで交差反応することが報告されている。本研究では、

lineage I ISFV の FL ドメインは MBFV や lineage II ISFV と異なる抗原性を有するこ

とを明らかにした。更に、lineage I ISFV の FL ドメインの一部を搭載した MBFV

(DENV、ZIKV、JEV 及び WNV)の変異型ウイルス様粒子(SVP)を作出し、その

変異型 SVP へのフラビウイルス感染血清の交差反応性と、その免疫により誘導さ

れる抗体の交差反応性を評価した。その結果、野生型 SVP と比較して、変異型 SVP

ではフラビウイルス感染血清(同ウイルス種・株)の交差反応性を低減させ、ウイ

ルス種特異的な結合シグナルを検出できた。また、チャレンジフラビウイルス(同

ウイルス種・異なるウイルス株)の感染血清においても、強いウイルス種特異的な

結合シグナルを検出することができた。さらに、変異型 SVP を免疫した血清におい

て、交差反応性が低下し、ADE 活性が抑制された抗体が誘導され、それらの抗体は

中和活性を有することを示した。本成果は、変異型 SVP を ELISA 抗原として用い

ることにより、交差反応性抗体の非特異的な結合を減少させ、ウイルス特異的な抗

体が検出できる血清診断法への応用可能性を示した。更に、変異型 SVP 免疫血清で

は、野生型 SVP と比べ劇的に ADE 活性が抑制され、一部に中和活性が認められた。

以上の結果から、変異型 SVP は新規フラビウイルスワクチン抗原の候補になり得

ることが期待される。しかしながら、交差反応エピトープは FL ドメイン以外にも

存在する。そのため、今後、更なる交差エピトープを抗原性が異なる lineage I ISFV

に置換することにより、血清診断法及びワクチン開発に応用可能なウイルス抗原の

作出を目指す。

59

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る