リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on serological diagnostic assays for Crimean-Congo hemorrhagic fever」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on serological diagnostic assays for Crimean-Congo hemorrhagic fever

Pongombo, Boniface Lombe 北海道大学

2022.03.24

概要

Crimean-Congo hemorrhagic fever (CCHF) is an important tick-borne zoonotic disease with a wide geographic distribution. It is caused by the CCHF virus (CCHFV) belonging to the genus Orthonairovirus, family Nairoviridae, order Bunyavirales. CCHFV infection of humans is potentially associated with fatal hemorrhagic fever. Serological surveillance of CCHFV infection of animals serves as an indicator of public health risks, and early detection of human infection is important for prevention of viral spread. However, CCHFV infection is not serologically monitored due to the limited availability of diagnostic tools. Existing serological diagnostics are human-specific and not readily available in CCHFV-affected areas. Handling live infectious CCHFVs requires a high biocontainment facility, limiting the capacity of serological diagnosis such as neutralization tests. Hence, there is a need to improve serological assays for CCHFV surveillance and epidemiology studies to prevent potential outbreaks.

 In Chapter I, a simple procedure for expression and purification of the recombinant CCHFV nucleoprotein (NP) was established, and its utility as an antigen for ELISA for the detection of CCHFV-specific IgG in serum/plasma of humans and animals was evaluated. cDNA of the NP open reading frame was cloned into a mammalian expression plasmid and introduced into cultured human cells. The expressed NP molecule was purified from the cell lysate using cesium-chloride gradient centrifugation and used as an antigen for several ELISA protocols. In addition to its animal species-independent utility, the established CCHFV NP-based ELISA showed abilities comparative to a commercialized ELISA kit for the detection of CCHFV NP-specific human IgG. These results demonstrate the usefulness of the CCHFV NP-based ELISA established in this study for seroepidemiological studies.

 In Chapter II, antigenic regions on the NP molecule were investigated. Using recombinant chimeric NPs between CCHFV and Nairobi sheep disease virus (NSDV), which is another nairovirus, it was found that the amino acids at positions 240-482 might include dominant epitopes recognized by anti-CCHFV IgG antibodies. In contrast, IgG antibodies to NSDV reacted to the region consisting of amino acid positions 1-240. Accordingly, all of the CCHFV NP-specific monoclonal antibodies generated in this study recognized this antigenic region. ELISA with a series of synthetic peptides based on the CCHFV NP sequence revealed that IgG antibodies in CCHFV-infected monkeys and patients were reactive to some of the peptide antigens. Fine epitope mapping of CCHFV NP is expected to improve the virus-specific serological assays for surveillance of CCHFV infection of humans and animals.

 This study focused on serological diagnostic assays for CCHFV infection. The findings not only provide useful information to improve the sensitivity and specificity of serological tests for CCHF but also help to enhance surveillance systems of CCHFV infection of both animals and humans through the development of rapid detection tests such as an immunochromatography-based diagnostic assay. These may contribute to CCHF prevention and control by reducing animal-to-human and human-to-human transmission of the virus.

この論文で使われている画像

参考文献

1. Al-Adhami BH, Gajadhar AA. A new multi-host species indirect ELISA using protein A/G conjugate for detection of anti-Toxoplasma gondii IgG antibodies with comparison to ELISA-IgG, agglutination assay and Western blot. Veterinary Parasitology 200, 66-73, 2014.

2. Andersson I, Bladh L, Mousavi-Jazi M, Magnusson KE, Lundkvist Å, Haller O, Mirazimi A. Human MxA protein inhibits the replication of Crimean-Congo hemorrhagic fever virus. Journal of Virology 78, 4323-4329, 2004.

3. Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification 48, 1-13, 2006.

4. Atkinson R, Burt F, Rybicki EP, Meyers AE. Plant-produced Crimean-Congo haemorrhagic fever virus nucleoprotein for use in indirect ELISA. Journal of Virological Methods 236, 170-177, 2016.

5. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Research 100, 159-189, 2013.

6. Bharat TA, Noda T, Riches JD, Kraehling V, Kolesnikova L, Becker S, Kawaoka Y, Briggs JA. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proceedings of the National Academy of Sciences of the United States of America 109, 4275-4280, 2012.

7. Bhide MR, Curlik J, Travnicek M, Lazar P. Protein A/G dependent ELISA a promising diagnostic tool in Lyme disease seroprevalence in game animals and hunting dogs. Comparative Immunology, Microbiology and Infectious Diseases 27, 191-199, 2004.

8. Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, Ksiazek T, Johnson KM, Meyerhoff A, O'Toole T, Ascher MS, Bartlett J, Breman JG, Eitzen JEM, Hamburg M, Hauer J, Henderson DA, Johnson RT, Kwik G, Layton M, Lillibridge S, Nabel GJ, Osterholm MT, Perl TM, Russell P, Tonat K, and for the Working Group on Civilian B. Hemorrhagic Fever Viruses as Biological WeaponsMedical and Public Health Management. JAMA 287, 2391-2405, 2002.

9. Burt FJ, Samudzi RR, Randall C, Pieters D, Vermeulen J, Knox CM. Human defined antigenic region on the nucleoprotein of Crimean-Congo hemorrhagic fever virus identified using truncated proteins and a bioinformatics approach. Journal of Virological Methods 193, 706-712, 2013.

10. Casals J, Tignor GH. The Nairovirus genus: serological relationships. Intervirology 14, 144-147, 1980.

11. Chamberlain J, Cook N, Lloyd G, Mioulet V, Tolley H, Hewson R. Co- evolutionary patterns of variation in small and large RNA segments of Crimean- Congo hemorrhagic fever virus. Journal of General Virology 86, 3337-3341, 2005.

12. Changula K, Yoshida R, Noyori O, Marzi A, Miyamoto H, Ishijima M, Yokoyama A, Kajihara M, Feldmann H, Mweene AS, Takada A. Mapping of conserved and species-specific antibody epitopes on the Ebola virus nucleoprotein. Virus Research 176, 83-90, 2013.

13. Chinikar S, Ghiasi SM, Hewson R, Moradi M, Haeri A. Crimean-Congo hemorrhagic fever in Iran and neighboring countries. Journal of Clinical Virology 47, 110-114, 2010.

14. Choe W, Durgannavar TA, Chung SJ. Fc-binding ligands of immunoglobulin G: An overview of high affinity proteins and peptides. Materials (Basel, Switzerland) 9, 994, 2016.

15. Dowall SD, Buttigieg KR, Findlay-Wilson SJD, Rayner E, Pearson G, Miloszewska A, Graham VA, Carroll MW, Hewson R. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Human Vaccines & Immunotherapeutics 12, 519-527, 2016.

16. Dubois M E, Hammarlund E, Slifka MK. Optimization of peptide-based ELISA for serological diagnostics: a retrospective study of human monkeypox infection. Vector Borne Zoonotic Dis 12, 400-409, 2012.

17. Emmerich P, Mika A, von Possel R, Rackow A, Liu Y, Schmitz H, Gunther S, Sherifi K, Halili B, Jakupi X, Berisha L, Ahmeti S, Deschermeier C. Sensitive and specific detection of Crimean-Congo hemorrhagic fever virus (CCHFV)-specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in mu-capture and IgG immune complex (IC) ELISA tests. PLoS Neglected Tropical Diseases 12, e0006366, 2018.

18. Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6, 203-214, 2006.

19. Feldmann F, Shupert WL, HaddockE, Twardoski B, Feldmann H. Gamma irradiation as an effective method for inactivation of emerging viral pathogens. The American Journal of Tropical Medicine and Hygiene 100, 1275-1277, 2019.

20. Fillâtre P, Revest M, Tattevin P. Crimean-Congo hemorrhagic fever: An update. Médecine et Maladies Infectieuses 49, 574-585, 2019.

21. Fritzen A, Risinger C, Korukluoglu G, Christova I, Corli Hitzeroth A, Viljoen N, Burt FJ, Mirazimi A, Blixt O. Epitope-mapping of the glycoprotein from Crimean-Congo hemorrhagic fever virus using a microarray approach. PLoS Neglected Tropical Diseases 12, e0006598, 2018.

22. Garcia S, Chinikar S, Coudrier D, Billecocq A, Hooshmand B, Crance JM, Garin D, Bouloy M. Evaluation of a Crimean-Congo hemorrhagic fever virus recombinant antigen expressed by Semliki Forest suicide virus for IgM and IgG antibody detection in human and animal sera collected in Iran. Journal of Clinical Virology 35, 154-159, 2006.

23. Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss, Y. Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs : Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy 21, 145-156, 2007.

24. Hartlaub J, Keller M, Groschup MH. Deciphering antibody responses to orthonairoviruses in ruminants. Microorganisms 9, no. 7, 1493,2021.

25. Holzer B, Bakshi S, Bridgen A, Baron MD. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PloS ONE 6, e28594-e28594, 2011.

26. Honig JE, Osborne JC, Nichol ST. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318, 10-16, 2004.

27. Intaramat A, Sornprachum T, Chantrathonkul B, Chaisuriya P, Lohnoo T, Yingyon W, Jongruja N, Kumsang Y, Sandee A, Chaiprasert A, Banyong R, Santurio JM, Grooters AM, Ratanabanangkoon K, Krajaejun T. Protein A/G- based immunochromatographic test for serodiagnosis of pythiosis in human and animal subjects from Asia and Americas. Medical Mycology 54, 641-647, 2016.

28. Jeeva S, Pador S, Voss B, Ganaie SS, Mir MA. Crimean-Congo hemorrhagic fever virus nucleocapsid protein has dual RNA binding modes. PloS ONE 12, e0184935, 2017.

29. Jeeva S, Mir S, Velasquez A, Ragan J, Leka A, Wu S, Sevarany AT, Royster AD, Almeida NA, Chan F. Crimean-Congo hemorrhagic fever virus nucleocapsid protein harbors distinct RNA-binding sites in the stalk and head domains. Journal of Biological Chemistry 294, 5023-5037, 2019.

30. Kalkan-Yazıcı M, Karaaslan E, Çetin NS, Hasanoğlu S, Güney F, Zeybek Ü, Doymaz MZ. Cross-reactive anti-nucleocapsid protein immunity against Crimean-Congo hemorrhagic fever virus and Hazara virus in multiple species. Journal of Virology 95, e02156-02120, 2021.

31. Krasteva S, Jara M, Frias-De-Diego A, Machado G. Nairobi sheep disease virus: A historical and epidemiological perspective. Frontiers in Veterinary Science 7, 419, 2020.

32. Leblebicioglu H, Ozaras R, Irmak H, Sencan I. Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Research 126, 21- 34, 2016.

33. Lerner EA. How to make a hybridoma. The Yale Journal of Biology and Medicine 54, 387-402, 1981.

34. Lindeborg M, Barboutis C, Ehrenborg C, Fransson T, Jaenson TG, Lindgren PE, Lundkvist A, Nystrom F, Salaneck E, Waldenstrom J, Olsen B. Migratory birds, ticks, and Crimean-Congo hemorrhagic fever virus. Emerging Infectious Diseases 18, 2095-2097, 2012.

35. Liu D, Li Y, Zhao J, Deng F, Duan X, Kou C, Wu T, Li Y, Wang Y, Ma J, Yang J, Hu Z, Zhang F, Zhang Y, Sun S. Fine epitope mapping of the central immunodominant region of nucleoprotein from Crimean-Congo hemorrhagic fever virus (CCHFV). PloS ONE 9, e108419, 2014.

36. Lombe BP, Miyamoto H, Saito T, Yoshida R, Manzoor R, Kajihara M, Shimojima M, Fukushi S, Morikawa S, Yoshikawa T, Kurosu T, Saijo M, Tang Q, Masumu J, Hawman D, Feldmann H, Takada A. Purification of Crimean-Congo hemorrhagic fever virus nucleoprotein and its utility for serological diagnosis. Scientific Reports 11, 2324, 2021.

37. Marriott AC, Polyzoni T, Antoniadis A, Nuttall PA. Detection of human antibodies to Crimean-Congo haemorrhagic fever virus using expressed viral nucleocapsid protein. Journal of General Virology 75 ( Pt 9), 2157-2161, 1994.

38. Mazzola LT, Kelly-Cirino C. Diagnostic tests for Crimean-Congo haemorrhagic fever: a widespread tickborne disease. BMJ Global Health 4, e001114, 2019.

39. Mehand MS, Millett P, Al-Shorbaji F, Roth C, Kieny MP, Murgue B. World Health Organization methodology to prioritize emerging infectious diseases in need of research and development. Emerging Infectious Diseases 24(9), e171427, 2018.

40. Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Research 98, 248-260, 2013.

41. Messina JP, Pigott DM, Golding N, Duda KA, Brownstein JS, Weiss DJ, Gibson H, Robinson TP, Gilbert M, William Wint G. The global distribution of Crimean- Congo hemorrhagic fever. Transactions of the Royal Society of Tropical Medicine and Hygiene 109, 503-513, 2015.

42. Moming A, Tuoken D, Yue X, Xu W, Guo R, Liu D, Li Y, Hu Z, Deng F, Zhang Y, Sun S. Mapping of B-cell epitopes on the N-terminal and C-terminal segment of nucleocapsid protein from Crimean-Congo hemorrhagic fever virus. PloS ONE 13, e0204264-e0204264, 2018.

43. Monsalve AL, Muñoz BJ, Vieira LM, Vicente SM, Fernández SP, Bas I, Leralta N, de Ory MF, Negredo A, Sánchez SM. Crimean-Congo haemorrhagic fever (CCHF) virus-specific antibody detection in blood donors, Castile-León, Spain, summer 2017 and 2018. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 25(10), 1900507, 2020.

44. Naderi HR, Sarvghad MR, Bojdy A, Hadizadeh MR, Sadeghi R, Sheybani F. Nosocomial outbreak of Crimean-Congo haemorrhagic fever. Epidemiology and Infection 139, 862-866, 2011.

45. Negredo A, de la Calle-Prieto F, Palencia-Herrejón E, Mora-Rillo M, Astray- Mochales J, Sánchez-Seco MP, Bermejo Lopez E, Menárguez J, Fernández-Cruz A, Sánchez-Artola B, Keough-Delgado E, Ramírez de Arellano E, Lasala F, Milla J, Fraile JL, Ordobás Gavín M, Martinez de la Gándara A, López Perez L, Diaz- Diaz D, López-García MA, Delgado-Jimenez P, Martín-Quirós A, Trigo E, Figueira JC, Manzanares J, Rodriguez-Baena E, Garcia-Comas L, Rodríguez- Fraga O, García-Arenzana N, Fernández-Díaz MV, Cornejo VM, Emmerich P, Schmidt-Chanasit J, Arribas JR. Autochthonous Crimean-Congo hemorrhagic fever in Spain. New England Journal of Medicine 377, 154-161, 2017.

46. Nymo IH, Godfroid J, Asbakk K, Larsen AK, das Neves CG, Rodven R, Tryland M. A protein A/G indirect enzyme-linked immunosorbent assay for the detection of anti-Brucella antibodies in Arctic wildlife. Journal of Veterinary Diagnostic Investigation 25, 369-375, 2013.

47. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. Journal of the American Chemical Society 125, 6160-6164, 2003.

48. Papa A, Ma B, Kouidou S, Tang Q, Hang C, Antoniadis A. Genetic characterization of the M RNA segment of Crimean-Congo hemorrhagic fever virus strains, China. Emerging Infectious Diseases 8, 50-53, 2002.

49. Patmawati, Minamihata K, Tatsuke T, Lee JM, Kusakabe T, Kamiya N. Expression and activation of horseradish peroxidase–protein A/G fusion protein in silkworm larvae for diagnostic purposes. Biotechnology Journal 13, 1700624, 2018.

50. Pellequer JL, Westhof E, Van Regenmortel MH. Predicting location of continuous epitopes in proteins from their primary structures. Methods in Enzymology 203, 176-201 1991.

51. Prickett SR, Rolland JM, O'Hehir RE. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology 45, 1015-1026, 2015.

52. Rangunwala A, Samudzi RR, Burt FJ. Detection of IgG antibody against Crimean-Congo haemorrhagic fever virus using ELISA with recombinant nucleoprotein antigens from genetically diverse strains. Epidemiology and Infection 142, 2147-2154, 2014.

53. Saijo M, Qing T, Niikura M, Maeda A, Ikegami T, Prehaud C, Kurane I, Morikawa S. Recombinant nucleoprotein-based enzyme-linked immunosorbent assay for detection of immunoglobulin G antibodies to Crimean-Congo hemorrhagic fever virus. Journal of Clinical Microbiology 40, 1587-1591, 2002.

54. Saijo M, Qing T, Niikura M, Maeda A, Ikegami T, Sakai K, Prehaud C, Kurane I, Morikawa S. Immunofluorescence technique using HeLa cells expressing recombinant nucleoprotein for detection of immunoglobulin G antibodies to Crimean-Congo hemorrhagic fever virus. Journal of Clinical Microbiology 40, 372-375, 2002.

55. Saijo M, Tang Q, Shimayi B, Han L, Zhang Y, Asiguma M, Tianshu D, Maeda A, Kurane I, Morikawa S. Recombinant nucleoprotein-based serological diagnosis of Crimean-Congo hemorrhagic fever virus infections. Journal of Medical Virology 75, 295-299, 2005.

56. Samudzi RR, Leman PA, Paweska JT, Swanepoel R, Burt FJ. Bacterial expression of Crimean-Congo hemorrhagic fever virus nucleoprotein and its evaluation as a diagnostic reagent in an indirect ELISA. Journal of Virological Methods 179, 70- 76, 2012.

57. Sas MA, Comtet L, Donnet F, Mertens M, Vatansever Z, Tordo N, Pourquier P, Groschup MH. A novel double-antigen sandwich ELISA for the species-independent detection of Crimean-Congo hemorrhagic fever virus-specific antibodies. Antiviral Research 151, 24-26, 2018.

58. Schaefer JJ, White HA, Schaaf SL, Mohammed HO, Wade SE. Chimeric protein A/G conjugate for detection of anti-Toxoplasma gondii immunoglobulin G in multiple animal species. Journal of Veterinary Diagnostic Investigation 24, 572- 575, 2012.

59. Schuster I, Mertens M, Mrenoshki S, Staubach C, Mertens C, Brüning F, Wernike K, Hechinger S, Berxholi K, Mitrov D, Groschup MH. Sheep and goats as indicator animals for the circulation of CCHFV in the environment. Experimental and Applied Acarology 68, 337-346, 2016.

60. Shahhosseini S, Das D, Qiu X, Feldmann H, Jones SM, Suresh MR. Production and characterization of monoclonal antibodies against different epitopes of Ebola virus antigens. Journal of Virological Methods 143, 29-37, 2007.

61. Shepherd AJ, Swanepoel R, Cornel AJ, Mathee O. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. The American Journal of Tropical Medicine and Hygiene 40, 326-331, 1989.

62. Shrivastava N, Shrivastava A, Ninawe SM, Sharma S, Kumar JS, Alam SI, Kanani A, Sharma SK, Dash PK. Development of multispecies recombinant nucleoprotein-based indirect ELISA for high-throughput screening of Crimean- Congo hemorrhagic fever virus-specific antibodies. Frontiers in Microbiology 10, 1822, 2019.

63. Spengler JR, Bergeron E, Rollin PE. Seroepidemiological studies of Crimean- Congo hemorrhagic fever virus in domestic and wild animals. PLoS Neglected Tropical Diseases 10, e0004210, 2016.

64. Spengler JR, Bergeron É, Spiropoulou CF. Crimean-Congo hemorrhagic fever and expansion from endemic regions. Current Opinion in Virology 34, 70-78, 2019.

65. van der Heide S, Russell DA. Optimisation of immuno-gold nanoparticle complexes for antigen detection. Journal of Colloid and Interface Science 471, 127-135, 2016.

66. Vanhomwegen J, Maria João A, Tatjana Avšič Ž, Silvia B, Sadegh C, Helen K, Gülay K, Miša K, Masoud M, Ali M, Mehrdad M, Anna P, Ana S, Batool, SM, Persofoni S, Katerina T, Roman W, Hervé Z, Philippe D. Diagnostic assays for Crimean-Congo hemorrhagic fever. Emerging Infectious Disease journal 18, 1958, 2012.

67. Walker PJ, Widen SG, Wood TG, Guzman H, Tesh RB, Vasilakis N. A Global genomic characterization of nairoviruses identifies nine discrete genogroups with distinctive structural characteristics and host-vector associations. The American journal of Tropical Medicine and Hygiene 94, 1107-1122, 2016.

68. Wang X, Li B, Guo Y, Shen S, Zhao L, Zhang P, Sun Y, Sui S F, Deng F, Lou Z. Molecular basis for the formation of ribonucleoprotein complex of Crimean- Congo hemorrhagic fever virus. Journal of Structural Biology 196, 455-465, 2016.

69. Wang Y, Dutta S, Karlberg H, Devignot S, Weber F, Hao Q, Tan Y J, Mirazimi A Kotaka M. Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage. Journal of Virology 86, 12294-12303, 2012.

70. Wei PF, Luo YJ, Li TX, Wang HL, Hu ZH, Zhang FC, Zhang YJ, Deng F, Sun SR. Serial expression of the truncated fragments of the nucleocapsid protein of CCHFV and identification of the epitope region. Virologica Sinica 25, 45-51, 2010.

71. Zivcec M, Scholte FE, Spiropoulou CF, Spengler JR, Bergeron E. Molecular insights into Crimean-Congo hemorrhagic fever virus. Viruses 8, 106, 2016.

参考文献をもっと見る