リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study of interjoint coordination during locomotion after spinal cord injury (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study of interjoint coordination during locomotion after spinal cord injury (本文)

佐藤, 裕太 慶應義塾大学

2022.09.05

概要

Understanding locomotor responses after neurological lesions is fundamental to explore the essence of flexible adaptation of the nervous system and to develop innovative neurological rehabilitation. In particular, spinal cord injury (SCI) is an important research target for this understanding in terms of the disruption of communication between supraspinal centers and spinal circuit. The central nervous system (CNS) controls numerous muscles and joints using common motor commands and produces coordinated joint movement. However, no evaluation measure that focuses on coordinated movement has been tested so far. In clinical environment, a clinician determines the affected segments of the spinal cord by an examination of myotomes (International Standards for Neurological Classification of Spinal Cord Injury; ISNCSCI) (Kirshblum et al., 2011), that is, key muscle function strength corresponding to each segment (but not coordination of movement) is just simply examined (Table 1-1). On the other hand, several kinematic studies have investigated the relationship between changes in superficial parameters such as stride length and joint angles during locomotion and neuropathology of the spinal cord in animal model; however, little is known about altered coordinated movement that underlies the generation of such gait parameters. Therefore, the author investigated the gait disturbance that occurs after SCI from the perspective of CNS as a gait controller. In this chapter, the author first summarizes how the CNS controls the redundant musculoskeletal systems during locomotion, then how locomotor output patterns are affected by CNS lesions. The purpose of the present dissertation was also described. In the following Chapter 2, the author investigated the differences in locomotor output patterns from CNS in mice with varying degrees of injury to obtain proof of the analysis. In order to verify whether the analysis method is adaptable to humans in the future, Chapter 3 describes the plastic change of locomotor output patterns after SCI in non-human primates, common marmosets. The overall conclusion and future prospect of the present study are mentioned in Chapter 4.

この論文で使われている画像

参考文献

Alluin, O., Karimi-Abdolrezaee, S., Delivet-Mongrain, H., Leblond, H., Fehlings, M.G., Rossignol, S., 2011. Kinematic study of locomotor recovery after spinal cord clip compression injury in rats. Journal of Neurotrauma 28, 1963-1981.

Aoi, S., Funato, T., 2016. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination. Neuroscience Research 104, 88-95.

Aoi, S., Ohashi, T., Bamba, R., Fujiki, S., Tamura, D., Funato, T., Senda, K., Ivanenko, Y., Tsuchiya, K., 2019. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis. Scientific Reports 9, 369 (13 pages).

Asboth, L., Friedli, L., Beauparlant, J., Martinez-Gonzalez, C., Anil, S., Rey, E., Baud, L., Pidpruzhnykova, G., Anderson, M.A., Shkorbatova, P., Batti, L., Pagès, S., Kreider, J., Schneider, B.L., Barraud, Q., Courtine, G., 2018. Cortico–reticulo– spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nature Neuroscience 21, 576-588.

Barbeau, H., Ladouceur, M., Norman, K.E., Pepin, A., Leroux, A., 1999. Walking after spinal cord injury: Evaluation, treatment, and functional recovery. Archives of Physical Medicine and Rehabilitation 80, 225-235.

Bareyre, F.M., Kerschensteiner, M., Raineteau, O., Mettenleiter, T.C., Weinmann, O., Schwab, M.E., 2004. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neuroscience 7, 269-277.

Barliya, A., Omlor, L., Giese, M.A., Flash, T., 2009. An analytical formulation of the law of intersegmental coordination during human locomotion. Experimental Brain Research 193, 371-385.

Barroso, F.O., Torricelli, D., Bravo-Esteban, E., Taylor, J., Gomez-Soriano, J., Santos, C., Moreno, J.C., Pons, J.L., 2015. Muscle synergies in cycling after incomplete spinal cord injury: Correlation with clinical measures of motor function and spasticity. Frontiers in Human Neuroscience 9, 706 (16 pages).

Battistuzzo, C.R., Rank, M.M., Flynn, J.R., Morgan, D.L., Callister, R., Callister, R.J., Galea, M.P., 2016. Gait recovery following spinal cord injury in mice: Limited effect of treadmill training. Journal of Spinal Cord Medicine 39, 335-343.

Bianchi, L., Angelini, D., Orani, G.P., Lacquaniti, F., 1998. Kinematic coordination in human gait: Relation to mechanical energy cost. Journal of Neurophysiology 79, 2155-2170.

Bizzi, E., Cheung, V.C., 2013. The neural origin of muscle synergies. Frontiers in Computational Neuroscience 7, 51 (6 pages).

Bizzi, E., Mussa-Ivaldi, F.A., Giszter, S., 1991. Computations underlying the execution of movement: A biological perspective. Science 253, 287-291.

Bleyenheuft, C., Cockx, S., Caty, G., Stoquart, G., Lejeune, T., Detrembleur, C., 2009. The effect of botulinum toxin injections on gait control in spastic stroke patients presenting with a stiff-knee gait. Gait and Posture 30, 168-172.

Borghese, N.A., Bianchi, L., Lacquaniti, F., 1996. Kinematic determinants of human locomotion. Journal of Physiology 494, 863-879.

Bosco, G., Rankin, A., Poppele, R.E., 2003. Modulation of dorsal spinocerebellar responses to limb movement. I. Effect of serotonin. Journal of Neurophysiology 90, 3361-3371.

Brotherton, S.S., Krause, J.S., Nietert, P.J., 2007. Falls in individuals with incomplete spinal cord injury. Spinal Cord 45, 37-40.

Calancie, B., Molano, M.R., Broton, J.G., 2002. Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain 125, 1150-1161.

Calancie, B., Needham-Shropshire, B., Jacobs, P., Willer, K., Zych, G., Green, B.A., 1994. Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117 1143-1159.

Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2006. Motor patterns in human walking and running. Journal of Neurophysiology 95, 3426-3437.

Catavitello, G., Ivanenko, Y., Lacquaniti, F., 2018. A kinematic synergy for terrestrial locomotion shared by mammals and birds. Elife 7 (28 pages).

Catavitello, G., Ivanenko, Y.P., Lacquaniti, F., 2015. Planar covariation of hindlimb and forelimb elevation angles during terrestrial and aquatic locomotion of dogs. PloS One 10, e0133936 (26 pages).

Cha, J., Heng, C., Reinkensmeyer, D.J., Roy, R.R., Edgerton, V.R., De Leon, R.D., 2007. Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. Journal of Neurotrauma 24, 1000-1012.

Cheron, G., Bouillot, E., Dan, B., Bengoetxea, A., Draye, J.P., Lacquaniti, F., 2001. Development of a kinematic coordination pattern in toddler locomotion: Planar covariation. Experimental Brain Research 137, 455-466.

Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A., Bizzi, E., 2009. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proceedings of the National Academy of Sciences of the United States of America 106, 19563-19568.

Cheung, V.C., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P., Bizzi, E., 2012. Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences of the United States of America 109, 14652-14656.

Chow, J.W., Stokic, D.S., 2015. Intersegmental coordination of gait after hemorrhagic stroke. Experimental Brain Research 233, 125-135.

Chvatal, S.A., Torres-Oviedo, G., Safavynia, S.A., Ting, L.H., 2011. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. Journal of Neurophysiology 106, 999-1015.

Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., Kautz, S.A., 2010. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology 103, 844-857.

Cote, M.P., Murray, M., Lemay, M.A., 2017. Rehabilitation strategies after spinal cord injury: Inquiry into the mechanisms of success and failure. Journal of Neurotrauma 34, 1841-1857.

Courtine, G., Roy, R.R., Hodgson, J., McKay, H., Raven, J., Zhong, H., Yang, H., Tuszynski, M.H., Edgerton, V.R., 2005. Kinematic and emg determinants in quadrupedal locomotion of a non-human primate (rhesus). Journal of Neurophysiology 93, 3127-3145.

Courtine, G., Schieppati, M., 2004. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans. Journal of Neurophysiology 91, 1524-1535.

Courtine, G., Song, B., Roy, R.R., Zhong, H., Herrmann, J.E., Ao, Y., Qi, J., Edgerton, V.R., Sofroniew, M.V., 2008. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nature Medicine 14, 69-74.

Curt, A., Van Hedel, H.J., Klaus, D., Dietz, V., Group, E.-S.S., 2008. Recovery from a spinal cord injury: Significance of compensation, neural plasticity, and repair. Journal of Neurotrauma 25, 677-685.

Daffertshofer, A., Lamoth, C.J., Meijer, O.G., Beek, P.J., 2004. Pca in studying coordination and variability: A tutorial. Clinical Biomechanics (Bristol, Avon) 19, 415-428.

Davis, B.L., Vaughan, C.L., 1993. Phasic behavior of emg signals during gait: Use of multivariate statistics. Journal of Electromyography and Kinesiology 3, 51-60.

De Quervain, I.A., Simon, S.R., Leurgans, S., Pease, W.S., McAllister, D., 1996. Gait pattern in the early recovery period after stroke. Journal of Bone and Joint Surgery (American Volume) 78, 1506-1514.

Den Otter, A.R., Geurts, A.C., Mulder, T., Duysens, J., 2007. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait and Posture 25, 342-352.

Detloff, M.R., Smith, E.J., Quiros Molina, D., Ganzer, P.D., Houle, J.D., 2014. Acute exercise prevents the development of neuropathic pain and the sprouting of non- peptidergic (gdnf- and artemin-responsive) c-fibers after spinal cord injury. Experimental Neurology 255, 38-48.

Dewolf, A.H., Ivanenko, Y., Zelik, K.E., Lacquaniti, F., Willems, P.A., 2018. Kinematic patterns while walking on a slope at different speeds. Journal of Applied Physiology 125, 642-653.

Dietz, V., Muller, R., Colombo, G., 2002. Locomotor activity in spinal man: Significance of afferent input from joint and load receptors. Brain 125, 2626-2634.

DiGiovanna, J., Dominici, N., Friedli, L., Rigosa, J., Duis, S., Kreider, J., Beauparlant, J., van den Brand, R., Schieppati, M., Micera, S., Courtine, G., 2016. Engagement of the rat hindlimb motor cortex across natural locomotor behaviors. Journal of Neuroscience 36, 10440-10455.

Dobkin, B.H., 2000. Functional rewiring of brain and spinal cord after injury: The three rs of neural repair and neurological rehabilitation. Current Opinion in Neurology 13, 655-659.

Dominici, N., Ivanenko, Y.P., Cappellini, G., d'Avella, A., Mondi, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., Poppele, R.E., Lacquaniti, F., 2011. Locomotor primitives in newborn babies and their development. Science 334, 997-999.

Federolf, P., Tecante, K., Nigg, B., 2012. A holistic approach to study the temporal variability in gait. Journal of Biomechanics 45, 1127-1132.

Fiander, M.D., Stifani, N., Nichols, M., Akay, T., Robertson, G.S., 2017. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Behavioural Brain Research 317, 95-108.

Fong, A.J., Cai, L.L., Otoshi, C.K., Reinkensmeyer, D.J., Burdick, J.W., Roy, R.R., Edgerton, V.R., 2005. Spinal cord-transected mice learn to step in response to quipazine treatment and robotic training. The Journal of Neuroscience 25, 11738- 11747.

Franklin, S.B., Gibson, D.J., Robertson, P.A., Pohlmann, J.T., Fralish, J.S., 1995. Parallel analysis - a method for determining significant principal components. Journal of Vegetation Science 6, 99-106.

Freund, P., Seif, M., Weiskopf, N., Friston, K., Fehlings, M.G., Thompson, A.J., Curt, A., 2019. Mri in traumatic spinal cord injury: From clinical assessment to neuroimaging biomarkers. Lancet Neurology 18, 1123-1135.

Freund, P., Weiskopf, N., Ashburner, J., Wolf, K., Sutter, R., Altmann, D.R., Friston, K., Thompson, A., Curt, A., 2013. Mri investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: A prospective longitudinal study. Lancet Neurology 12, 873-881.

Friedli, L., Rosenzweig, E.S., Barraud, Q., Schubert, M., Dominici, N., Awai, L., Nielson, J.L., Musienko, P., Nout-Lomas, Y., Zhong, H., Zdunowski, S., Roy, R.R., Strand, S.C., van den Brand, R., Havton, L.A., Beattie, M.S., Bresnahan, J.C., Bezard, E., Bloch, J., Edgerton, V.R., Ferguson, A.R., Curt, A., Tuszynski, M.H., Courtine, G., 2015. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine 7, 302ra134 (12 pages).

Frigon, A., 2017. The neural control of interlimb coordination during mammalian locomotion. Journal of Neurophysiology 117, 2224-2241.

Funato, T., Aoi, S., Oshima, H., Tsuchiya, K., 2010. Variant and invariant patterns embedded in human locomotion through whole body kinematic coordination. Experimental Brain Research 205, 497-511.

Gil-Agudo, A., Perez-Nombela, S., Forner-Cordero, A., Perez-Rizo, E., Crespo-Ruiz, B., del Ama-Espinosa, A., 2011. Gait kinematic analysis in patients with a mild form of central cord syndrome. Journal of Neuroengineering and Rehabilitation 8, 7 (10 pages).

Gizzi, L., Nielsen, J.F., Felici, F., Ivanenko, Y.P., Farina, D., 2011. Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. Journal of Neurophysiology 106, 202-210.

Goldberg, E.J., Neptune, R.R., 2007. Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness. Gait and Posture 25, 360-367.

Gracia-Ibanez, V., Sancho-Bru, J.L., Vergara, M., Jarque-Bou, N.J., Roda-Sales, A., 2020. Sharing of hand kinematic synergies across subjects in daily living activities. Scientific Reports 10, 6116 (11 pages).

Grasso, R., Ivanenko, Y.P., Zago, M., Molinari, M., Scivoletto, G., Castellano, V., Macellari, V., Lacquaniti, F., 2004. Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain 127, 1019-1034.

Grillner, S., 1981. Control of locomotion in bipeds, tetrapods, and fish. Handbook of Physiology II, 1179-1236.

Harkema, S.J., Hurley, S.L., Patel, U.K., Requejo, P.S., Dobkin, B.H., Edgerton, V.R., 1997. Human lumbosacral spinal cord interprets loading during stepping. Journal of Neurophysiology 77, 797-811.

Holstege, J.C., Kuypers, H.G., 1987. Brainstem projections to spinal motoneurons: An update. Neuroscience 23, 809-821.

Ito, S., Nagoshi, N., Tsuji, O., Shibata, S., Shinozaki, M., Kawabata, S., Kojima, K., Yasutake, K., Hirokawa, T., Matsumoto, M., Takei, K., Nakamura, M., Okano, H., 2018. Lotus inhibits neuronal apoptosis and promotes tract regeneration in contusive spinal cord injury model mice. eNeuro 5 (16 pages).

Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F., 2007. Modular control of limb movements during human locomotion. Journal of Neuroscience 27, 11149-11161.

Ivanenko, Y.P., Cappellini, G., Solopova, I.A., Grishin, A.A., Maclellan, M.J., Poppele, R.E., Lacquaniti, F., 2013. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits. Frontiers in Computational Neuroscience 7, 123 (11 pages).

Ivanenko, Y.P., d'Avella, A., Poppele, R.E., Lacquaniti, F., 2008. On the origin of planar covariation of elevation angles during human locomotion. Journal of Neurophysiology 99, 1890-1898.

Ivanenko, Y.P., Grasso, R., Zago, M., Molinari, M., Scivoletto, G., Castellano, V., Macellari, V., Lacquaniti, F., 2003. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. Journal of Neurophysiology 90, 3555-3565.

Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2004. Five basic muscle activation patterns account for muscle activity during human locomotion. Journal of Physiology 556, 267-282.

Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2006. Motor control programs and walking. Neuroscientist 12, 339-348.

Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2009. Distributed neural networks for controlling human locomotion: Lessons from normal and sci subjects. Brain Research Bulletin 78, 13-21.

Jordan, L., 1991. Brainstem and spinal cord mechanisms for the initiation of locomotion, In: Shimaura, M., Grillner, S., Edgerton, V.R. (Eds.), Neurobiological basis of human locomotion, Japan Scientific Societies Press, Tokyo, pp. 3-20.

Kato, M., Murakami, S., Yasuda, K., Hirayama, H., 1984. Disruption of fore-and hindlimb coordination during overground locomotion in cats with bilateral serial hemisection of the spinal cord. Neuroscience Research 2, 27-47.

Kawashima, N., Nozaki, D., Abe, M.O., Nakazawa, K., 2008. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans. Journal of Neurophysiology 99, 2946-2955.

Kirshblum, S.C., Burns, S.P., Biering-Sorensen, F., Donovan, W., Graves, D.E., Jha, A., Johansen, M., Jones, L., Krassioukov, A., Mulcahey, M.J., Schmidt-Read, M., Waring, W., 2011. International standards for neurological classification of spinal cord injury (revised 2011). The journal of spinal cord medicine 34, 535-546.

Kitamura, K., Fujiyoshi, K., Yamane, J., Toyota, F., Hikishima, K., Nomura, T., Funakoshi, H., Nakamura, T., Aoki, M., Toyama, Y., Okano, H., Nakamura, M., 2011. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PloS One 6, e27706 (13 pages).

Knutsson, E., Richards, C., 1979. Different types of disturbed motor control in gait of hemiparetic patients. Brain 102, 405-430.

Lacquaniti, F., Grasso, R., Zago, M., 1999. Motor patterns in walking. News in Physiological Sciences 14, 168-174.

Lamoth, C.J., Daffertshofer, A., Huys, R., Beek, P.J., 2009. Steady and transient coordination structures of walking and running. Human Movement Science 28, 371-386.

Latash, M.L., 1999. On the evolution of the notion of synergy., In: Gantchev, G.N., Mori, S., Massion, J. (Eds.), Motor control, today and tomorrow, Academic Publishing House, Sofia, pp. 181-196.

Leblond, H., L'Espérance, M., Orsal, D., Rossignol, S., 2003. Treadmill locomotion in the intact and spinal mouse. The Journal of Neuroscience 23, 11411-11419.

Liddell, E., Phillips, C., 1944. Pyramidal section in the cat. Brain 67, 1-9.

Loy, K., Bareyre, F.M., 2019. Rehabilitation following spinal cord injury: How animal models can help our understanding of exercise-induced neuroplasticity. Neural Regeneration Research 14, 405-412.

Lunenburger, L., Bolliger, M., Czell, D., Muller, R., Dietz, V., 2006. Modulation of locomotor activity in complete spinal cord injury. Experimental Brain Research 174, 638-646.

Luo, L., Callaway, E.M., Svoboda, K., 2018. Genetic dissection of neural circuits: A decade of progress. Neuron 98, 256-281.

Maclellan, M.J., McFadyen, B.J., 2010. Segmental control for adaptive locomotor adjustments during obstacle clearance in healthy young adults. Experimental Brain Research 202, 307-318.

Maier, I.C., Ichiyama, R.M., Courtine, G., Schnell, L., Lavrov, I., Edgerton, V.R., Schwab, M.E., 2009. Differential effects of anti-nogo-a antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain 132, 1426-1440.

Martino, G., Ivanenko, Y., Serrao, M., Ranavolo, A., Draicchio, F., Casali, C., Lacquaniti, F., 2019. Locomotor coordination in patients with hereditary spastic paraplegia. Journal of Electromyography and Kinesiology 45, 61-69.

Mathis, A., Mamidanna, P., Cury, K.M., Abe, T., Murthy, V.N., Mathis, M.W., Bethge, M., 2018. Deeplabcut: Markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience 21, 1281-1289.

Matsuzaki, M., Ebina, T., 2020. Common marmoset as a model primate for study of the motor control system. Current Opinion in Neurobiology 64, 103-110.

McKay, W.B., Ovechkin, A.V., Vitaz, T.W., Terson de Paleville, D.G., Harkema, S.J., 2011. Neurophysiological characterization of motor recovery in acute spinal cord injury. Spinal Cord 49, 421-429.

Mulroy, S., Gronley, J., Weiss, W., Newsam, C., Perry, J., 2003. Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait and Posture 18, 114-125.

Nam, K.Y., Kim, H.J., Kwon, B.S., Park, J.W., Lee, H.J., Yoo, A., 2017. Robot-assisted gait training (lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. Journal of Neuroengineering and Rehabilitation 14, 24 (13 pages).

Okano, H., 2021. Current status of and perspectives on the application of marmosets in neurobiology. Annual Review of Neuroscience 44, 27-48.

Orlovskiĭ, G.N., Deliagina, T.G., Grillner, S., 1999. Neuronal control of locomotion : From mollusc to man. Oxford University Press, p. 322.

Pepin, A., Ladouceur, M., Barbeau, H., 2003a. Treadmill walking in incomplete spinal- cord-injured subjects: 2. Factors limiting the maximal speed. Spinal Cord 41, 271- 279.

Pepin, A., Norman, K.E., Barbeau, H., 2003b. Treadmill walking in incomplete spinal- cord-injured subjects: 1. Adaptation to changes in speed. Spinal Cord 41, 257-270.

Perez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G., 2014. Idtracker: Tracking individuals in a group by automatic identification of unmarked animals. Nature Methods 11, 743-748.

Petras, J.M., 1967. Cortical, tectal and tegmental fiber connections in the spinal cord of the cat. Brain Research 6, 275-324.

Poppele, R.E., Bosco, G., Rankin, A.M., 2002. Independent representations of limb axis length and orientation in spinocerebellar response components. Journal of Neurophysiology 87, 409-422.

Prins, N.W., Pohlmeyer, E.A., Debnath, S., Mylavarapu, R., Geng, S., Sanchez, J.C., Rothen, D., Prasad, A., 2017. Common marmoset (callithrix jacchus) as a primate model for behavioral neuroscience studies. Journal of Neuroscience Methods 284, 35-46.

Puentes, S., Kadone, H., Kubota, S., Abe, T., Shimizu, Y., Marushima, A., Sankai, Y., Yamazaki, M., Suzuki, K., 2018a. Reshaping of gait coordination by robotic intervention in myelopathy patients after surgery. Frontiers in Neuroscience 12, 99 (10 pages).

Puentes, S., Kadone, H., Watanabe, H., Ueno, T., Yamazaki, M., Sankai, Y., Marushima, A., Suzuki, K., 2018b. Reshaping of bilateral gait coordination in hemiparetic stroke patients after early robotic intervention. Frontiers in Neuroscience 12, 719.

Raineteau, O., Schwab, M.E., 2001. Plasticity of motor systems after incomplete spinal cord injury. Nature Reviews: Neuroscience 2, 263-273 (11 pages).

Rossignol, S., Frigon, A., 2011. Recovery of locomotion after spinal cord injury: Some facts and mechanisms. Annual Review of Neuroscience 34, 413-440.

Roussel, M., Lemieux, M., Bretzner, F., 2020. Using mouse genetics to investigate supraspinal pathways of the brain important to locomotion, In: Whelan, P.J., Sharples, S.A. (Eds.), The neural control of movement model systems and tools to study locomotor function, Elsevier, Amsterdam, pp. 269-313.

Safavynia, S.A., Torres-Oviedo, G., Ting, L.H., 2011. Muscle synergies: Implications for clinical evaluation and rehabilitation of movement. Topics in Spinal Cord Injury Rehabilitation 17, 16-24.

Sato, Y., Kondo, T., Shibata, R., Nakamura, M., Okano, H., Ushiba, J., in Press-a. Functional reorganization of locomotor kinematic synergies reflects the neuropathology in a mouse model of spinal cord injury. Neuroscience Research.

Sato, Y., Kondo, T., Shinozaki, M., Shibata, R., Nagoshi, N., Ushiba, J., Nakamura, M., Okano, H., in Press-b. Markerless analysis of hindlimb kinematics in spinal cord- injured mice through deep learning. Neuroscience Research.

Sato, Y., Kondo, T., Uchida, A., Sato, K., Yoshino-Saito, K., Nakamura, M., Okano, H., Ushiba, J., 2022. Preserved intersegmental coordination during locomotion after cervical spinal cord injury in common marmosets. Behavioural Brain Research 425, 113816 (9 pages).

Schwab, M.E., Strittmatter, S.M., 2014. Nogo limits neural plasticity and recovery from injury. Current Opinion in Neurobiology 27, 53-60.

Shah, P.K., Gerasimenko, Y., Shyu, A., Lavrov, I., Zhong, H., Roy, R.R., Edgerton, V.R., 2012. Variability in step training enhances locomotor recovery after a spinal cord injury. European Journal of Neuroscience 36, 2054-2062.

Shimada, H., Kanai, R., Kondo, T., Yoshino-Saito, K., Uchida, A., Nakamura, M., Ushiba, J., Okano, H., Ogihara, N., 2017. Three-dimensional kinematic and kinetic analysis of quadrupedal walking in the common marmoset (callithrix jacchus). Neuroscience Research 125, 11-20.

Squair, J.W., Gautier, M., Sofroniew, M.V., Courtine, G., Anderson, M.A., 2021. Engineering spinal cord repair. Current Opinion in Biotechnology 72, 48-53.

Stetter, B.J., Herzog, M., Mohler, F., Sell, S., Stein, T., 2020. Modularity in motor control: Similarities in kinematic synergies across varying locomotion tasks. Frontiers in Sports and Active Living 2, 596063 (9 pages).

Swanson, L.W., 1995. Mapping the human brain: Past, present, and future. Trends in Neurosciences 18, 471-474.

Takeoka, A., Vollenweider, I., Courtine, G., Arber, S., 2014. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 159, 1626-1639.

Tashiro, S., Nishimura, S., Iwai, H., Sugai, K., Zhang, L., Shinozaki, M., Iwanami, A., Toyama, Y., Liu, M., Okano, H., Nakamura, M., 2016. Functional recovery from neural stem/progenitor cell transplantation combined with treadmill training in mice with chronic spinal cord injury. Scientific Reports 6, 30898 (14 pages).

Timoszyk, W.K., Nessler, J.A., Acosta, C., Roy, R.R., Edgerton, V.R., Reinkensmeyer, D.J., de Leon, R., 2005. Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Research 1050, 180-189.

Visintin, M., Barbeau, H., 1994. The effects of parallel bars, body weight support and speed on the modulation of the locomotor pattern of spastic paretic gait. A preliminary communication. Spinal Cord 32, 540-553.

Wahl, A.S., Omlor, W., Rubio, J.C., Chen, J.L., Zheng, H., Schroter, A., Gullo, M., Weinmann, O., Kobayashi, K., Helmchen, F., Ommer, B., Schwab, M.E., 2014. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 344, 1250-1255.

Wang, X., O'Dwyer, N., Halaki, M., 2013. A review on the coordinative structure of human walking and the application of principal component analysis. Neural Regeneration Research 8, 662-670.

Wei, R.-H., Zhao, C., Rao, J.-S., Zhao, W., Zhou, X., Tian, P.-Y., Song, W., Ji, R., Zhang, A.-F., Yang, Z.-Y., Li, X.-G., 2018. The kinematic recovery process of rhesus monkeys after spinal cord injury. Experimental Animals 67, 431-440.

Wernig, A., Muller, S., Nanassy, A., Cagol, E., 1995. Laufband therapy based on 'rules of spinal locomotion' is effective in spinal cord injured persons. European Journal of Neuroscience 7, 823-829.

Willenberg, R., Steward, O., 2015. Nonspecific labeling limits the utility of cre-lox bred cst-yfp mice for studies of corticospinal tract regeneration. Journal of Comparative Neurology 523, 2665-2682.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る