リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms causing reduced fertility under heat stress in relation to uterine environment and oocyte developmental competence in dairy cows」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms causing reduced fertility under heat stress in relation to uterine environment and oocyte developmental competence in dairy cows

河野, 光平 北海道大学

2023.03.23

概要

Heat stress can be defined as an environment that increases body temperature above the
set-point temperature [1], and is one of the major contributing factors to low fertility in dairy cows.
The conception rate of AI begins to decline when uterine temperature at insemination increases
by approximately 0.5C above the normal range (38.3-38.6C) [58]. The temperature-humidity
index (THI), which is calculated from ambient temperature (AT) and relative humidity (RH), has
been widely used as an indicator of heat stress in dairy cows. ...

この論文で使われている画像

参考文献

1.

Hansen PJ. Effects of heat stress on mammalian reproduction. Philos Trans R Soc B

Biol Sci 2009; 364: 3341-3350.

2.

St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US

livestock industries. J Dairy Sci 2003; 86: E52-E77.

3.

Roush W. Population: The view from Cairo. Science (80- ) 1994; 265: 1164-1167.

4.

Purwanto BP, Abo Y, Sakamoto R, Yamamoto S, Furumoto F. Diurnal patterns of

heat production and heart rate under thermoneutral conditions in Holstein Friesian cows

differing in milk production. J Agric Sci 1990; 114: 139-142.

5.

Sartori R, Sartor-Bergfelt R, Mertens SA, Guenther JN, Parrish JJ, Wiltbank MC.

Fertilization and early embryonic development in heifers and lactating cows in summer

and lactating and dry cows in winter. J Dairy Sci 2002; 85: 2803-2812.

6.

Collier RJ, Hall LW, Rungruang S, Zimbleman RB. Quantifying heat stress and its

impact on metabolism and performance. Proc. 23rd Annual Florida Ruminant Nutrition

Symposium, Gainesville. University of Florida, Gainesville, USA; 2012: 74-84.

7.

Flamenbaum I, Galon N. Management of heat stress to improve fertility in dairy cows

in Israel. J Reprod Dev 2010; 56: S36-S41.

8.

Wolfenson D, Roth Z, Meidan R. Impaired reproduction in heat-stressed cattle: Basic

and applied aspects. Anim Reprod Sci 2000; 60-61: 535-547.

9.

López-Gatius F, López-Béjar M, Fenech M, Hunter RHF. Ovulation failure and

double ovulation in dairy cattle: risk factors and effects. Theriogenology 2005; 63: 12981307.

10.

Hansen PJ. Reproductive physiology of the heat-stressed dairy cow: Implications for

fertility and assisted reproduction. Anim Reprod 2019; 16: 497-507.

11.

De Rensis F, Garcia-Ispierto I, López-Gatius F. Seasonal heat stress: Clinical

implications and hormone treatments for the fertility of dairy cows. Theriogenology

2015; 84: 659-666.

12.

Aréchiga CF, Staples CR, McDowell LR, Hansen PJ. Effects of timed insemination

and supplemental β-carotene on reproduction and milk yield of dairy cows under heat

stress. J Dairy Sci 1998; 81: 390-402.

13.

de la Sota RL, Burke JM, Risco CA, Moreira F, DeLorenzo MA, Thatcher WW.

Evaluation of timed insemination during summer heat stress in lactating dairy cattle.

Theriogenology 1998; 49: 761-770.

14.

Cartmill JA, El-Zarkouny SZ, Hensley BA, Rozell TG, Smith JF, Stevenson JS. An

alternative AI breeding protocol for dairy cows exposed to elevated ambient

temperatures before or after calving or both. J Dairy Sci 2001; 84: 799-806.

53

15.

Rensis FD, Marconi P, Capelli T, Gatti F, Facciolongo F, Franzini S, Scaramuzzi R.

Fertility in postpartum dairy cows in winter or summer following estrus synchronization

and fixed time AI after the induction of an LH surge with GnRH or hCG.

Theriogenology 2002; 58: 1675-1687.

16.

Akbarabadi MA, Shabankareh HK, Abdolmohammadi A, Shahsavari MH. Effect

of PGF2α and GnRH on the reproductive performance of postpartum dairy cows

subjected to synchronization of ovulation and timed artificial insemination during the

warm or cold periods of the year. Theriogenology 2014; 82: 509-516.

17.

Garcia-Ispierto I, De Rensis F, Pérez-Salas JA, Nunes JM, Pradés B, Serrano-Pérez

B, López-Gatius F. The GnRH analogue dephereline given in a fixed-time AI protocol

improves ovulation and embryo survival in dairy cows. Res Vet Sci 2019; 122: 170-174.

18.

Putney DJ, Drost M, Thatcher WW. Influence of summer heat stress on pregnancy

rates of lactating dairy cattle following embryo transfer or artificial insemination.

Theriogenology 1989; 31: 765-778.

19.

Drost M, Ambrose JD, Thatcher MJ, Cantrell CK, Wolfsdorf KE, Hasler JF,

Thatcher WW. Conception rates after artificial insemination or embryo transfer in

lactating dairy cows during summer in florida. Theriogenology 1999; 52: 1161-1167.

20.

Ambrose JD, Drost M, Monson RL, Rutledge JJ, Leibfried-Rutledge ML, Thatcher

MJ, Kassa T, Binelli M, Hansen PJ, Chenoweth PJ, Thatcher WW. Efficacy of

timed embryo transfer with fresh and frozen in vitro produced embryos to increase

pregnancy rates in heat-stressed dairy cattle. J Dairy Sci 1999; 82: 2369-2376.

21.

Al-Katanani Y., Drost M, Monson R., Rutledge J., Krininger C., Block J, Thatcher

W., Hansen P. Pregnancy rates following timed embryo transfer with fresh or vitrified

in vitro produced embryos in lactating dairy cows under heat stress conditions.

Theriogenology 2002; 58: 171-182.

22.

Stewart BM, Block J, Morelli P, Navarette AE, Amstalden M, Bonilla L, Hansen

PJ, Bilby TR. Efficacy of embryo transfer in lactating dairy cows during summer using

fresh or vitrified embryos produced in vitro with sex-sorted semen. J Dairy Sci 2011; 94:

3437-3445.

23.

Hansen PJ. Cellular and molecular basis of therapies to ameliorate effects of heat stress

on embryonic development in cattle. Anim Reprod 2018; 10: 322-333.

24.

Block J, Hansen PJ. Interaction between season and culture with insulin-like growth

factor-1 on survival of in vitro produced embryos following transfer to lactating dairy

cows. Theriogenology 2007; 67: 1518-1529.

25.

Chebel RC, Demétrio DGB, Metzger J. Factors affecting success of embryo collection

and transfer in large dairy herds. Theriogenology 2008; 69: 98-106.

54

26.

Loureiro B, Bonilla L, Block J, Fear JM, Bonilla AQS, Hansen PJ. Colonystimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine

embryos produced in vitro. Endocrinology 2009; 150: 5046-5054.

27.

Baruselli PS, Ferreira RM, Sales JNS, Gimenes LU, Sá Filho MF, Martins CM,

Rodrigues CA, Bó GA. Timed embryo transfer programs for management of donor and

recipient cattle. Theriogenology 2011; 76: 1583-1593.

28.

Vasconcelos JLM, Jardina DTG, Sá Filho OG, Aragon FL, Veras MB. Comparison

of progesterone-based protocols with gonadotropin-releasing hormone or estradiol

benzoate for timed artificial insemination or embryo transfer in lactating dairy cows.

Theriogenology 2011; 75: 1153-1160.

29.

De Rensis F, Lopez-Gatius F, García-Ispierto I, Morini G, Scaramuzzi RJ. Causes

of declining fertility in dairy cows during the warm season. Theriogenology 2017; 91:

145-153.

30.

Brigstock DR. Growth factors in the uterus: steroidal regulation and biological actions.

Baillieres Clin Endocrinol Metab 1991; 5: 791-808.

31.

Malayer JR, Hansen PJ, Buhi WC. Effect of day of the oestrous cycle, side of the

reproductive tract and heat shock on in-vitro protein secretion by bovine endometrium. J

Reprod Fertil 1988; 84: 567-578.

32.

Putney DJ, Malayer JR, Gross TS, Thatcher WW, Hansen PJ, Drost M. Heat stressinduced alterations in the synthesis and secretion of proteins and prostaglandins by

cultured bovine conceptuses and uterine endometrium. Biol Reprod 1988; 39: 717-728.

33.

Putney DJ, Torres CAA, Gross TS, Thatcher WW, Plante C, Drost M. Modulation

of uterine prostaglandin biosynthesis by pregnant and nonpregnant cows at day 17 postestrus in response to in vivo and in vitro heat stress. Anim Reprod Sci 1989; 20: 31-47.

34.

Hansen PJ, Aréchiga CF. Strategies for managing reproduction in the heat-stressed

dairy cow. J Anim Sci 1997; 77: 36.

35.

Katagiri S, Takahashi Y. Changes in EGF concentrations during estrous cycle in

bovine endometrium and their alterations in repeat breeder cows. Theriogenology 2004;

62: 103-112.

36.

Katagiri S, Moriyoshi M. Alteration of the endometrial EGF profile as a potential

mechanism connecting the alterations in the ovarian steroid hormone profile to

embryonic loss in repeat breeders and high-producing cows. J Reprod Dev 2013; 59:

415-420.

37.

Katagiri S, Moriyoshi M, Yanagawa Y. Endometrial epidermal growth factor profile

and its abnormalities in dairy cows. J Reprod Dev 2016; 62: 465-470.

38.

Katagiri S, Takahashi Y. Potential relationship between normalization of endometrial

55

epidermal growth factor profile and restoration of fertility in repeat breeder cows. Anim

Reprod Sci 2006; 95: 54-66.

39.

Katagiri S, MoriyoshiI M, Takahashi Y. Low incidence of an altered endometrial

epidermal growth factor (EGF) profile in repeat breeder Holstein heifers and differential

effect of parity on the EGF profile between fertile Holstein (dairy) and Japanese Black

(beef) cattle. J Reprod Dev 2013; 59: 575-579.

40.

Katagiri S, Takahashi Y. A progestin-based treatment with a high dose of estradiol

benzoate normalizes cyclic changes in endometrial EGF concentrations and restores

fertility in repeat breeder cows. J Reprod Dev 2008; 54: 473-479.

41.

Badrakh D, Yanagawa Y, Nagano M, Katagiri S. Effect of seminal plasma infusion

into the vagina on the normalization of endometrial epidermal growth factor

concentrations and fertility in repeat breeder dairy cows. J Reprod Dev 2020; 66: 149154.

42.

Katagiri S. Relationship between endometrial epidermal growth factor and fertility after

embryo transfer. J Reprod Dev 2006; 52 (suppl): S133-S137.

43.

Roth Z, Braw-Tal R, Wolfenson D. Improvement of quality of oocytes collected in the

autumn by enhanced removal of impaired follicles from previously heat-stressed cows.

Reproduction 2001; 122: 737-744.

44.

Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal changes in

bovine fertility: relation to developmental competence of oocytes, membrane properties

and fatty acid composition of follicles. Reproduction 2001; 121: 447-454.

45.

Gendelman M, Roth Z. Incorporation of coenzyme Q10 into bovine oocytes improves

mitochondrial features and alleviates the effects of summer thermal stress on

developmental competence. Biol Reprod 2012; 87: 1-12.

46.

Roth Z. Heat stress, the follicle, and its enclosed oocyte: Mechanisms and potential

strategies to improve fertility in dairy cows. Reprod Domest Anim 2008; 43: 238-244.

47.

Lussier JG, Dufour PM and JJ. Growth rates of follicles in the ovary of the cow.

Reproduction 1987; 81: 301-307.

48.

Hirao Y, Itoh T, Shimizu M, Iga K, Aoyagi K, Kobayashi M, Kacchi M, Hoshi H,

Takenouchi N. In vitro growth and development of bovine oocyte-granulosa cell

complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in

culture medium. Biol Reprod 2004; 70: 83-91.

49.

Endo M, Kawahara-Miki R, Cao F, Kimura K, Kuwayama T, Iwata H. Estradiol

supports in vitro development of bovine early antral follicles. Reproduction 2013; 145:

85-96.

50.

Makita M, Miyano T. Steroid hormones promote bovine oocyte growth and connection

56

with granulosa cells. Theriogenology 2014; 82: 605-612.

51.

Wolfenson D, Lew BJ, Thatcher WW, Graber Y, Meidan R. Seasonal and acute heat

stress effects on steroid production by dominant follicles in cows. Anim Reprod Sci

1997; 47: 9-19.

52.

Roth Z, Meidan R, Shaham-Albalancy A, Braw-Tal R, Wolfenson D. Delayed effect

of heat stress on steroid production in medium-sized and preovulatory bovine follicles.

Reproduction 2001; 121: 745-751.

53.

Roth Z. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Cellular and

molecular mechanisms of heat stress related to bovine ovarian function1. J Anim Sci

2015; 93: 2034-2044.

54.

Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The effects

of cysteine addition during in vitro maturation on the developmental competence, ROS,

GSH and apoptosis level of bovine oocytes exposed to heat stress. Zygote 2012; 20: 249259.

55.

Li HJ, Sutton-McDowall ML, Wang X, Sugimura S, Thompson JG, Gilchrist RB.

Extending prematuration with cAMP modulators enhances the cumulus contribution to

oocyte antioxidant defence and oocyte quality via gap junctions. Hum Reprod 2016; 31:

810-821.

56.

Sakaguchi K, Tanida T, Abdel-Ghani MA, Kanno C, Yanagawa Y, Katagiri S,

Nagano M. Relationship between the antral follicle count in bovine ovaries from a local

abattoir and steroidogenesis of granulosa cells cultured as oocyte-cumulus-granulosa

complexes. J Reprod Dev 2018; 64: 503-510.

57.

Yang Y, Kanno C, Sakaguchi K, Katagiri S, Yanagawa Y, Nagano M. Theca cells

can support bovine oocyte growth in vitro without the addition of steroid hormones.

Theriogenology 2020; 142: 41-47.

58.

Gwazdauskas FC, Thatcher WW, Wilcox CJ. Physiological, environmental, and

hormonal factors at insemination which may affect conception. J Dairy Sci 1973; 56:

873-877.

59.

Honig H, Ofer L, Kaim M, Jacobi S, Shinder D, Gershon E. The effect of cooling

management on blood flow to the dominant follicle and estrous cycle length at heat

stress. Theriogenology 2016; 86: 626-634.

60.

Bai H, Ukita H, Kawahara M, Mitani T, Furukawa E, Yanagawa Y, Yabuuchi N,

Kim H, Takahashi M. Effect of summer heat stress on gene expression in bovine

uterine endometrial tissues. Anim Sci J 2020; 91: e13474.

61.

Wolfenson D, Roth Z. Impact of heat stress on cow reproduction and fertility. Anim

Front 2019; 9: 32-38.

57

62.

Putney DJ, Mullins S, Thatcher WW, Drost M, Gross TS. Embryonic development in

superovulated dairy cattle exposed to elevated ambient temperatures between the onset

of estrus and insemination. Anim Reprod Sci 1989; 19: 37-51.

63.

Ealy AD, Drost M, Hansen PJ. Developmental changes in embryonic resistance to

adverse effects of maternal heat stress in cows. J Dairy Sci 1993; 76: 2899-2905.

64.

Chebel RC, Santos JEP, Reynolds JP, Cerri RLA, Juchem SO, Overton M. Factors

affecting conception rate after artificial insemination and pregnancy loss in lactating

dairy cows. Anim Reprod Sci 2004; 84: 239-255.

65.

Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. Effect of the

temperature-humidity index on body temperature and conception rate of lactating dairy

cows in southwestern Japan. J Reprod Dev 2011; 57: 450-456.

66.

Lawrence JL, Payton RR, Godkin JD, Saxton AM, Schrick FN, Edwards JL.

Retinol improves development of bovine oocytes compromised by heat stress during

maturation. J Dairy Sci 2004; 87: 2449-2454.

67.

Edwards JL, Bogart AN, Rispoli LA, Saxton AM, Schrick FN. Developmental

competence of bovine embryos from heat-stressed ova. J Dairy Sci 2009; 92: 563-570.

68.

Edwards JL, Hansen PJ. Differential responses of bovine oocytes and preimplantation

embryos to heat shock. Mol Reprod Dev 1997; 46: 138-145.

69.

Sakatani M, Kobayashi S, Takahashi M. Effects of heat shock on in vitro

development and intracellular oxidative state of bovine preimplantation embryos. Mol

Reprod Dev 2004; 67: 77-82.

70.

Sangsritavong S, Combs DK, Sartori R, Armentano LE, Wiltbank MC. High feed

intake increases liver blood flow and metabolism of progesterone and estradiol-17β in

dairy cattle. J Dairy Sci 2002; 85: 2831-2842.

71.

Wiltbank M, Lopez H, Sartori R, Sangsritavong S, Gümen A. Changes in

reproductive physiology of lactating dairy cows due to elevated steroid metabolism.

Theriogenology 2006; 65: 17-29.

72.

Paria BC, Song H, Dey SK. Implantation: molecular basis of embryo-uterine dialogue.

Int J Dev Biol 2001; 45: 597-605.

73.

Katagiri S, Moon YS, Yuen BH. The role for the uterine insulin-like growth factor I in

early embryonic loss after superovulation in the rat. Fertil Steril 1996; 65: 426-436.

74.

Yanagawa Y, Matsuura Y, Suzuki M, Saga S ichi, Okuyama H, Fukui D, Bando G,

Nagano M, Katagiri S, Takahashi Y, Tsubota T. Accessory corpora lutea formation in

pregnant Hokkaido sika deer (Cervus nippon yesoensis) investigated by examination of

ovarian dynamics and steroid hormone concentrations. J Reprod Dev 2015; 61: 61-66.

75.

Wise ME, Armstrong D V., Huber JT, Hunter R, Wiersma F. Hormonal alterations

58

in the lactating dairy cow in response to thermal stress. J Dairy Sci 1988; 71: 2480-2485.

76.

Bridges PJ, Brusie MA, Fortune JE. Elevated temperature (heat stress) in vitro reduces

androstenedione and estradiol and increases progesterone secretion by follicular cells

from bovine dominant follicles. Domest Anim Endocrinol 2005; 29: 508-522.

77.

Wilson SJ, Marion RS, Spain JN, Spiers DE, Keisler DH, Lucy MC. Effects of

controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J Dairy Sci

1998; 81: 2124-2131.

78.

Wilson SJ, Kirby CJ, Koenigsfeld AT, Keisler DH, Lucy MC. Effects of controlled

heat stress on ovarian function of dairy cattle. 2. Heifers. J Dairy Sci 1998; 81: 21322138.

79.

Madan ML, Johnson HD. Environmental heat effects on bovine luteinizing hormone. J

Dairy Sci 1973; 56: 1420-1423.

80.

Gilad E, Meidan R, Berman a, Graber Y, Wolfenson D. Effect of heat stress on

tonic and GnRH-induced gonadotrophin secretion in relation to concentration of

oestradiol in plasma of cyclic cows. J Reprod Fertil 1993; 99: 315-321.

81.

Ford SP, Chenault JR, Echternkamp SE. Uterine blood flow of cows during the

oestrous cycle and early pregnancy: effect of the conceptus on the uterine blood supply.

J Reprod Fertil 1979; 56: 53-62.

82.

Bollwein H, Meyer HHD, Maierl J, Weber F, Baumgartner U, Stolla R. Transrectal

Doppler sonography of uterine blood flow in cows during the estrous cycle.

Theriogenology 2000; 53: 1541-1552.

83.

Roman-Ponce H, Thatcher WW, Caton D, Barron DH, Wilcox CJ. Thermal stress

effects on uterine blood flow in dairy cows. J Anim Sci 1978; 46: 175-180.

84.

De Rensis F, Scaramuzzi RJ. Heat stress and seasonal effects on reproduction in the

dairy cow - A review. Theriogenology 2003; 60: 1139-1151.

85.

Johnson J, Corbisier R, Stensgard B, Toft D. The involvement of p23, hsp90, and

immunophilins in the assembly of progesterone receptor complexes. J Steroid Biochem

Mol Biol 1996; 56: 31-37.

86.

Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF. A

pathway of multi-chaperone interactions common to diverse regulatory proteins:

estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl

hydrocarbon receptor. Cell Stress Chaperones 1996; 1: 237-250.

87.

Sabbah M, Radanyi C, Redeuilh G, Baulieu EE. The 90 kDa heat-shock protein

(hsp90) modulates the binding of the oestrogen receptor to its cognate DNA. Biochem J

1996; 314 Pt 1: 205-213.

88.

Yan G, Liu K, Hao Z, Shi Z, Li H. The effects of cow-related factors on rectal

59

temperature, respiration rate, and temperature-humidity index thresholds for lactating

cows exposed to heat stress. J Therm Biol 2021; 100: 103041.

89.

Dikmen S, Cole JB, Null DJ, Hansen PJ. Heritability of rectal temperature and genetic

correlations with production and reproduction traits in dairy cattle. J Dairy Sci 2012; 95:

3401-3405.

90.

Dikmen S, Cole JB, Null DJ, Hansen PJ. Genome-wide association mapping for

identification of quantitative trait loci for rectal temperature during heat stress in

Holstein cattle. PLoS One 2013; 8: e69202.

91.

Bohmanova J, Misztal I, Tsuruta S, Norman HD, Lawlor TJ. Short communication:

Genotype by environment interaction due to heat stress. J Dairy Sci 2008; 91: 840-846.

92.

Zhang Z, Krause M, Davis DL. Epidermal growth factor receptors in porcine

endometrium: binding characteristics and the regulation of prostaglandin E and F2α

production 1. Biol Reprod 1992; 46: 932-936.

93.

Shelton K, Parkinson TJ, Hunter MG, Kelly RW, Lamming GE. Prostaglandin E2 as

a potential luteotrophic agent during early pregnancy in cattle. J Reprod Fertil 1990; 90:

11-17.

94.

Putney DJ, Gross TS, Thatcher WW. Prostaglandin secretion by endometrium of

pregnant and cyclic cattle at day 17 after oestrus in response to in-vitro heat stress. J

Reprod Fertil 1988; 84: 475-483.

95.

Malayer JR, Hansen PJ, Gross TS, Thatcher WW. Regulation of heat shock-induced

alterations in the release of prostaglandins by the uterine endometrium of cows.

Theriogenology 1990; 34: 219-230.

96.

Nabenishi H, Sugino F, Konaka R, Yamazaki A. Conception rate of Holstein and

Japanese Black cattle following embryo transfer in southwestern Japan. Anim Sci J 2018;

89: 1073-1078.

97.

Vasconcelos JLM, Sá Filho OG, Justolin PLT, Morelli P, Aragon FL, Veras MB,

Soriano S. Effects of postbreeding gonadotropin treatments on conception rates of

lactating dairy cows subjected to timed artificial insemination or embryo transfer in a

tropical environment. J Dairy Sci 2011; 94: 223-234.

98.

Moghaddam A, Karimi I, Pooyanmehr M. Effects of short-term cooling on pregnancy

rate of dairy heifers under summer heat stress. Vet Res Commun 2009; 33: 567-575.

99.

Gendelman M, Roth Z. Seasonal effect on germinal vesicle-stage bovine oocytes is

further expressed by alterations in transcript levels in the developing embryos associated

with reduced developmental competence. Biol Reprod 2012; 86: 1-9.

100.

Payton RR, Romar R, Coy P, Saxton AM, Lawrence JL, Edwards JL. Susceptibility

of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat

60

stress in vitro. Biol Reprod 2004; 71: 1303-1308.

101.

Roth Z. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular

and Molecular Responses of the Oocyte. Annu Rev Anim Biosci 2017; 5: 151-170.

102.

Ispada J, Rodrigues TA, Risolia PHB, et al. Astaxanthin counteracts the effects of heat

shock on the maturation of bovine oocytes. Reprod Fertil Dev 2018; 30: 1169-1179.

103.

Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant. Cell Death

Differ 2009 1610 2009; 16: 1303-1314.

104.

Meister A. Selective modification of glutathione metabolism. Science (80- ) 1983; 220:

472-477.

105.

De Matos DG, Furnus CC, Moses DF, Martinez AG, Matkomc M. Stimulation of

Glutathione Synthesis of In Vitro Matured Bovine Oocytes and-Its Effect on Embryo

Development and Freezability. Mol Reprod Dev 1996; 45: 451-457.

106.

Sakaguchi K, Huang W, Yang Y, Yanagawa Y, Nagano M. Relationship between

in vitro growth of bovine oocytes and steroidogenesis of granulosa cells cultured in

medium supplemented with bone morphogenetic protein-4 and follicle stimulating

hormone. Theriogenology 2017; 97: 113-123.

107.

Huang W, Nagano M, Kang SS, Yanagawa Y, Takahashi Y. Effects of in vitro

growth culture duration and prematuration culture on maturational and developmental

competences of bovine oocytes derived from early antral follicles. Theriogenology 2013;

80: 793-799.

108.

Rivera R, Hansen PJ. Development of cultured bovine embryos after exposure to high

temperatures in the physiological range. Reproduction 2001; 121: 107-115.

109.

Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus

cell-enclosed mouse oocytes. Mol Reprod Dev 1997; 46: 551-566.

110.

Nagano M, Kang SS, Koyama K, Huang W, Yanagawa Y, Takahashi Y. In vitro

maturation system for individual culture of bovine oocytes using micro-volume multiwell plate. Jpn J Vet Res 2013; 61: 149-154.

111.

Nagano M, Katagiri S, Takahashi Y. Relationship between bovine oocyte morphology

and in vitro developmental potential. Zygote 2006; 14: 53-61.

112.

Chelenga M, Sakaguchi K, Abdel-Ghani MA, Yanagawa Y, Katagiri S, Nagano M.

Effect of increased oxygen availability and astaxanthin supplementation on the growth,

maturation and developmental competence of bovine oocytes derived from early antral

follicles. Theriogenology 2020; 157: 341-349.

113.

Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of

glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992; 37: 963-978.

114.

Abdel-Ghani MA, Yanagawa Y, Balboula AZ, Sakaguchi K, Kanno C, Katagiri S,

61

Takahashi M, Nagano M. Astaxanthin improves the developmental competence of

in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived

from bovine early antral follicles. Reprod Fertil Dev 2019; 31: 272-281.

115.

Gendelman M, Aroyo A, Yavin S, Roth Z. Seasonal effects on gene expression,

cleavage timing, and developmental competence of bovine preimplantation embryos.

Reproduction 2010; 140: 73-82.

116.

Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational

competence and transcriptional activity. Mol Reprod Dev 1995; 42: 437-442.

117.

Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final

maturation in cattle. Theriogenology 1997; 47: 23-32.

62

Summary in Japanese

夏季の暑熱ストレスによる乳牛の受胎率低下の原因は多岐にわたる。これまで

の研究では、卵子の成熟および受精の過程、8 細胞期以前の初期胚などが高温に感受性

であり、これらの時期の卵子および初期胚への暑熱負荷によって早期胚死滅が起こるこ

とが主な原因とされてきた。一方、桑実胚期以降の胚は高温に対して抵抗性であり、こ

れらの胚を子宮内へ移植する胚移植は、夏場の受胎率向上に有効であることが明らかに

されている。しかし、暑熱ストレスは子宮の機能異常を引き起こすことで、胚移植によ

る受胎率も低下させる可能性が考えられる。また、人工授精による受胎率の低下は、涼

しくなる秋季においても継続する。これは夏季の暑熱ストレスによって発育途中の小さ

な卵胞内の卵子がダメージを受けているためであると考えられる。したがって、本研究

では、第 1 章において暑熱ストレスによる乳牛の子宮内膜機能への影響について、第 2

章においては小卵胞内の卵子の発育および発生能への影響について評価した。

牛では子宮内膜における上皮成長因子 (Epidermal growth factor: EGF) 濃度は受胎性

および子宮内膜機能の指標とされ、その発情周期中の変化が消失すると、早期胚死滅が

増加して受胎性が低下する。子宮内膜 EGF 濃度異常の発生には、リピートブリーダー

牛や高泌乳牛において共通してみられる、血中の卵巣ホルモン濃度の変化が関わってい

ることが示されている。また、この血中卵巣ホルモン濃度の異常は、暑熱ストレスを受

けている牛においても同様にみられる変化である。そこで第 1 章では、子宮内膜の EGF

濃度異常が暑熱ストレスによる受胎率の低下に関与しているか調べるために、ホルスタ

イン種泌乳牛において、暑熱環境下における EGF 濃度異常の発生頻度と胚移植後の受

胎率の関係について調べた。北海道および九州において飼養されているホルスタイン種

泌乳牛 365 頭を用い、6-9 月 (暑熱期、北海道: 90 頭、九州: 121 頭) および 10-1 月 (対

照期、北海道: 86 頭、九州: 68 頭) において試験を行った。発情後 3 日目に子宮内膜組

織を採取し、組織中の EGF 濃度を測定した。その結果、北海道および九州いずれの地

域においても、EGF 濃度異常を示す牛の割合は、10-1 月に比べて 6-9 月の方が高かった

(P < 0.05)。10-1 月と比較した 6-9 月の EGF 濃度異常を示す牛の割合は、北海道および

九州において、それぞれ 2 倍および 3 倍に増加した。試験期間を通じた (6-1 月) EGF 濃

度異常を示す牛の割合は、北海道 (26.1%) と比較して九州 (34.9%) において高い傾向

にあった (P = 0.07)。次に、6-9 月において九州地方のホルスタイン種泌乳牛 79 頭を用

い、発情日および発情後 3 日目の直腸温度による EGF 濃度異常の発生率への影響を調

べた。試験牛の一部 (67 頭) には、受胎性を評価するために、発情後 7 日目に胚移植を

行った。発情後 3 日目の直腸温度にかかわらず、発情日の直腸温度が高い (≥ 39.5℃) 牛

において、EGF 濃度異常の発生頻度は高く (64.1 vs. 30.0%、P < 0.05)、胚移植による受

胎率は低かった (26.7 vs. 51.4%、P < 0.05)。これらの結果から、発情日の暑熱ストレス

によって引き起こされる子宮内膜 EGF 発現の異常が、暑熱期における乳牛の受胎率低

下の一因となることが示された。

63

夏季の暑熱ストレスによる乳牛の受胎率低下が、涼しくなる秋季にも持続することは、

夏季の暑熱ストレスによる小卵胞内の卵子へのダメージにより、卵子の発生能が低下す

ることが原因であると推測されている。小卵胞の中でも、初期胞状卵胞 (直径 0.3-1 mm)

の時期は、卵子が発生能を獲得する上で重要な時期であるが、暑熱ストレスによる初期

胞状卵胞の発育および卵胞内卵子の品質への影響を調べた報告はない。そこで第 2 章で

は、初期胞状卵胞 (直径 0.5-1 mm) に由来する卵子-卵丘-顆粒層細胞複合体 (oocytecumulus-granulosa complexes: OCGCs) の体外発育培養系 (in vitro growth: IVG) を用いて、

暑熱期の乳牛の日内体温変化を模した条件を設定しその影響を調べた。OCGCs を牛の

正常な体温に近い 38.5℃で培養する対照群と、暑熱環境下の乳牛の体温変化を模した温

度条件 (38.5℃: 5 h, 39.5℃: 5 h, 40.5℃: 5 h, 39.5℃: 9 h) で培養する暑熱群に分け、12 日

間の IVG に供し、暑熱負荷が卵子の発育、発生能、および卵子発生能と関連がある指標

(顆粒層細胞のステロイドホルモン産生能、卵子の酸化ストレス状態、および卵子と卵

丘細胞との細胞間結合) に及ぼす影響を調べた。培養前後の卵子直径の増加は、対照群

と比べて暑熱群の方が小さかった (P < 0.05)。卵子の核成熟率、受精後の卵割率、顆粒

層細胞のステロイドホルモン産生能、卵子中の活性酸素種量および卵子と卵丘細胞との

細胞間結合の程度には、群間で差がみられなかった。一方、胚盤胞発生率は対照群

(27.7%) と 比 べ て 暑 熱 群 (0.0%) で 低 く 、 卵 子 中 の 還 元 型 グ ル タ チ オ ン (reduced

glutathione: GSH) 量も暑熱群において低かった (P < 0.05)。また、GSH の合成を促進す

るシステインの培地への添加が、IVG において暑熱負荷を受けている卵子の発育、発生

能および GSH 量に及ぼす効果を調べたところ、システインの添加によって卵子中の

GSH 量が増加し、卵子の発育と胚盤胞への発生率 (27.9 vs. 6.1%) も改善された (P <

0.05)。これらの結果から、夏季の暑熱ストレスが卵子中の GSH 量を減少させることに

よって、初期胞状卵胞中の卵子の発育および発生能を低下させ、冷涼な秋季においても

受胎率を低下させる可能性が考えられた。

本研究において、夏季の暑熱ストレスが乳牛において子宮内膜機能の異常を引き起こ

し、夏場の受胎率改善に最も有効とされる胚移植による受胎率も低下させることを示し

た。さらに、暑熱ストレスは卵子中の GSH の枯渇を介して、小卵胞中における卵子の

発育および発生能を低減させることを示した。夏季と秋季における乳牛の繁殖成績は、

子宮内膜機能と小卵胞の発育に着目した対策や治療法によってさらに改善できる可能

性がある。

64

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る