リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative Analysis of Patient-Matched PDOs Revealed a Reduction in OLFM4-Associated Clusters in Metastatic Lesions in Colorectal Cancer」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative Analysis of Patient-Matched PDOs Revealed a Reduction in OLFM4-Associated Clusters in Metastatic Lesions in Colorectal Cancer

Okamoto, Takuya 京都大学 DOI:10.14989/doctor.k23572

2021.11.24

概要

【目的・背景】腫瘍組織は機能的に不均一な細胞から構成される。ヒト検体における原発巣と転移巣の包括的なオミックス解析が行われてきたが、転移に伴う腫瘍組織を構成する細胞集団の変化については明らかではない。同一患者から樹立されたPatient-derived organoids(PDOs)を用いて同一培養条件下での腫瘍組織の細胞不均一性とその細胞生物学的意義について検証する。

【方法.結果】StageⅣの大腸がん患者21名の原発巣と転移/再発巣のから合計72個のPDOsを樹立した。PDOsの遺伝子変異は由来する手術標本と85%-100%の頻度で一致した。一方、PDOsをバルクで遺伝子発現解析を行ったところ、同一患者の原発巣と転移/再発巣PDOsは異なるクラスターを形成した。原発巣PDOsでは転移/再発巣PDOsに比較して幹細胞マーカーであるOLFM4に加え、MUC2やST6GALNAC1などの分化細胞マーカーが高発現していた。OLFM4と相関する発現パターンを示す遺伝子にはSLC12A2やRGMBやBCL2といった消化管幹細胞マーカーが含まれており、原発巣と転移・再発巣の遺伝子発現の違いは特定の遺伝子の単独の変化ではなくオルガノイドを構成する細胞集団の変化に起因することが考えられた。そこで同一患者PDOsの原発巣(HCT25-LM)、同時性肝転移巣(HCT25-5LM)、異時性肝転移巣(HCT25-10LMRR)の1細胞遺伝子発現解析(scRNA-seq)を行った。その結果、PDOsを構成する糸田胞集団はC1-5の5つのクラスターに区分され、さらにDifferentially Expressed Genes(DGE)解析では、C5とC4では分化マーカーが、C2-4では増殖マーカーが高発現していた。C1ではOLFM4が最も高く発現しており、MYCやIFITM3などの幹細胞マーカーも高発現していた。Gene Set Enrichment Analysis(GSEA)角晰ではC2-4では細胞増殖に関連する遺伝子群、C1ではRNA代謝飾羽訳に関わる遺伝子群が相関していた。このことからPDOsは、幹細胞様クラスター(C1)、2つの増殖細胞様クラスター(C2とC3)、前駆細胞様クラスター(C4)、分化細胞様クラスター(C5)から構成され、進行大腸がんにおいても正常組織に類似の細胞階層性が存在することが示された。興味深いことに、原発巣由来PDOでは幹細胞および分化細胞(Cl、C4、C5)の割合が多いのに対し、転移・再発巣由来PDOでは増殖細胞(C3)の割合が多かった。これらの結果とバルク遺伝子発現解析の結果から、転移/再発巣PDOsでは幹細胞や分化細胞が減少しており増殖細胞の分画が増加していることが明らかになった。幹細胞マーカーの候補として同定されたOLFM4の生物学的検証を目的として、ゲノム編集により3’UTR領域にIRES-EGFP-P2A-iCaspase9カセットを導入し、可視化と除去実験を行った。その結果、FACSにより分離した原発巣PDOのOLFM4陽性細胞はOLFM4陰性細胞に比べて6.4倍のオルガノイド形成能を示した。また、OLFM4陰性細胞から生じるオルガノイドは、その過程でOLFM4陽性細胞が出現すること、そのOLFM4陽性細胞を除去するとオルガノイド形成が阻害されることが明らかになった。一方、転移巣由来PDOでは遺伝子発現解析結果と一致してOLFM4陽性細胞は検出されず、OLFM4陰性細胞からのオルガノイド構成効率は、陽性細胞の除去に影響されなかった。

【結語.考察】同一患者の原発巣と転移巣から樹立されたPDOsの比較解析により、転移に伴う細胞階層性の変化を明らかにした。原発巣由来PDOではOLFM4陽性細胞ががん幹細胞としてオルガノイドの構成に必須の機能を果たしているのに対し、転移巣由来PDOの細胞多様性は異なり、オルガノイドの構成がOLFM4陽性細胞に依存しないことが明らかになった。大腸がん原発巣と転移/再発巣では、異なった細胞集団を治療標的とすることで奏効率が改善される可能性がある。

この論文で使われている画像

参考文献

Barker, N. (2014). Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 15, 19–33.

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Co- zijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of stem cells in small intestine and co- lon by marker gene Lgr5. Nature 449, 1003–1007.

Bedard, P.L., Hansen, A.R., Ratain, M.J., and Siu, L.L. (2013). Tumour heterogeneity in the clinic. Nature 501, 355–364.

Birkbak, N.J., and McGranahan, N. (2020). Cancer genome evolu- tionary trajectories in metastasis. Cancer Cell 37, 8–19.

Blanco, S., Bandiera, R., Popis, M., Hussain, S., Lombard, P., Aleksic, J., Sajini, A., Tanna, H., Cortes-Garrido, R., Gkatza, N., et al. (2016). Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340.

Boj, S.F., Hwang, C.I., Baker, L.A., Chio, I.I., Engle, D.D., Corbo, V., Jager, M., Ponz-Sarvise, M., Tiriac, H., Spector, M.S., et al. (2015). Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338.

Clevers, H. (2013). The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284.

Cortina, C., Turon, G., Stork, D., Hernando-Momblona, X., Sevil- lano, M., Aguilera, M., Tosi, S., Merlos-Suarez, A., Stephan-Otto At- tolini, C., Sancho, E., et al. (2017). A genome editing approach to study cancer stem cells in human tumors. EMBO Mol. Med. 9, 869–879.

Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P.S., Rothenberg, M.E., Leyrat, A.A., Sim, S., Okamoto, J., Johnston, D.M., Qian, D., et al. (2011). Single-cell dissection of transcriptional heteroge- neity in human colon tumors. Nat. Biotechnol. 29, 1120–1127.

de Sousa e Melo, F., Kurtova, A.V., Harnoss, J.M., Kljavin, N., Hoeck, J.D., Hung, J., Anderson, J.E., Storm, E.E., Modrusan, Z., Koeppen, H., et al. (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature 543, 676–680.

Drost, J., and Clevers, H. (2018). Organoids in cancer research. Nat. Rev. Cancer 18, 407–418.

Eide, P.W., Bruun, J., Lothe, R.A., and Sveen, A. (2017). CMScaller: an R package for consensus molecular subtyping of colorectal can- cer pre-clinical models. Sci. Rep. 7, 16618.

Engel, R.M., Chan, W.H., Nickless, D., Hlavca, S., R ichards, E., Kerr, G., Oliva, K., McMurrick, P.J., Jarde, T., and Abud, H.E. (2020). Pa- tient-derived colorectal cancer organoids upregulate revival stem cell marker genes following chemotherapeutic treatment. J. Clin. Med. 9, 128.

Fujii, M., Shimokawa, M., Date, S., Takano, A., Matano, M., Nanki, K., Ohta, Y., Toshimitsu, K., Nakazato, Y., Kawasaki, K., et al. (2016). A colorectal tumor organoid library demonstrates progres- sive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838.

Fumagalli, A., Oost, K.C., Kester, L., Morgner, J., Bornes, L., Bruens, L., Spaargaren, L., Azkanaz, M., Schelfhorst, T., Beerling, E., et al. (2020). Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578.e7.

Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angel- ino, P., et al. (2015). The consensus molecular subtypes of colo- rectal cancer. Nat. Med. 21, 1350–1356.

Haber, A.L., Biton, M., Rogel, N., Herbst, R.H., Shekhar, K., Smillie, C., Burgin, G., Delorey, T.M., Howitt, M.R., Katz, Y., et al. (2017). A single-cell survey of the small intestinal epithelium. Nature 551, 333–339.

Huang, L., Holtzinger, A., Jagan, I., BeGora, M., Lohse, I., Ngai, N., Nostro, C., Wang, R., Muthuswamy, L.B., Crawford, H.C., et al. (2015). Ductal pancreatic cancer modeling and drug screening us- ing human pluripotent stem cell- and patient-derived tumor orga- noids. Nat. Med. 21, 1364–1371.

Ikehara, Y., Kojima, N., Kurosawa, N., Kudo, T., Kono, M., Nishi- hara, S., Issiki, S., Morozumi, K., Itzkowitz, S., Tsuda, T., et al. (1999). Cloning and expression of a human gene encoding an N- acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9, 1213–1224.

Ishaque, N., Abba, M.L., Hauser, C., Patil, N., Paramasivam, N., Huebschmann, D., Leupold, J.H., Balasubramanian, G.P., Klein- heinz, K., Toprak, U.H., et al. (2018). Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nat. Commun. 9, 4782.

Iusuf, D., Teunissen, S.F., Wagenaar, E., Rosing, H., Beijnen, J.H., and Schinkel, A.H. (2011). P-Glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hy- droxytamoxifen and restricts their brain penetration.

J. Pharmacol. Exp. Ther. 337, 710–717.

Johnson, K.A., DeStefanis, R.A., Emmerich, P.B., Grogan, P.T., Kratz, J.D., Makkar, S.K., Clipson, L., and Deming, D.A. (2020). Hu- man colon organoids and other laboratory strategies to enhance patient treatment selection. Curr. Treat. Options Oncol. 21, 35.

Karthaus, W.R., Iaquinta, P.J., Drost, J., Gracanin, A., van Boxtel, R., Wongvipat, J., Dowling, C.M., Gao, D., Begthel, H., Sachs, N., et al. (2014). Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175.

Kiyotani, K., Mushiroda, T., Imamura, C.K., Hosono, N., Tsunoda, T., Kubo, M., Tanigawara, Y., Flockhart, D.A., Desta, Z., Skaar, T.C., et al. (2010). Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J. Clin. Oncol. 28, 1287–1293.

Koslow, M., O’Keefe, K.J., Hosseini, Z.F., Nelson, D.A., and Larsen, M. (2019). ROCK inhibitor increases proacinar cells in adult sali- vary gland organoids. Stem Cell Res 41, 101608.

Lambert, A.W., Pattabiraman, D.R., and Weinberg, R.A. (2017). Emerging biological principles of metastasis. Cell 168, 670–691.

Lee, J.R., Kwon, C.H., Choi, Y., Park, H.J., Kim, H.S., Jo, H.J., Oh, N., and Park do, Y. (2016). Transcriptome analysis of paired primary colorectal carcinoma and liver metastases reveals fusion transcripts and similar gene expression profiles in primary carcinoma and liver metastases. BMC Cancer 16, 539.

Lenos, K.J., Miedema, D.M., Lodestijn, S.C., Nijman, L.E., van den Bosch, T., Romero Ros, X., Lourenco, F.C., Lecca, M.C., van der Heijden, M., van Neerven, S.M., et al. (2018). Stem cell function- ality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 20, 1193– 1202.

Li, H., Courtois, E.T., Sengupta, D., Tan, Y., Chen, K.H., Goh, J.J.L., Kong, S.L., Chua, C., Hon, L.K., Tan, W.S., et al. (2017). Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718.

Liakath-Ali, K., Mills, E.W., Sequeira, I., Lichtenberger, B.M., Pisco, A.O., Sipila, K.H., Mishra, A., Yoshikawa, H., Wu, C.C., Ly, T., et al. (2018). An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature 556, 376–380.

Magee, J.A., Piskounova, E., and Morrison, S.J. (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283– 296.

Massague, J., and Obenauf, A.C. (2016). Metastatic colonization by circulating tumour cells. Nature 529, 298–306.

Meacham, C.E., and Morrison, S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337.

Munoz, J., Stange, D.E., Schepers, A.G., van de Wetering, M., Koo, B.K., Itzkovitz, S., Volckmann, R., Kung, K.S., Koster, J., Radulescu, S., et al. (2012). The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ’+4’ cell markers. EMBO J. 31, 3079–3091.

Nanki, K., Toshimitsu, K., Takano, A., Fujii, M., Shimokawa, M., Ohta, Y., Matano, M., Seino, T., Nishikori, S., Ishikawa, K., et al. (2018). Divergent routes toward Wnt and R-spondin niche inde- pendency during human gastric carcinogenesis. Cell 174, 856– 869 e817.

Ohata, H., Ishiguro, T., Aihara, Y., Sato, A., Sakai, H., Sekine, S., Ta- niguchi, H., Akasu, T., Fujita, S., Nakagama, H., et al. (2012). Induc- tion of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Res. 72, 5101–5110.

Ooft, S.N., Weeber, F., Dijkstra, K.K., McLean, C.M., Kaing, S., van Werkhoven, E., Schipper, L., Hoes, L., Vis, D.J., van de Haar, J., et al. (2019). Patient-derived organoids can predict response to chemo- therapy in metastatic colorectal cancer patients. Sci. Translational Med. 11, eaay2574.

Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F., Balgobind, A.V., Wind, K., Gracanin, A., Begthel, H., et al. (2018). A living biobank of breast cancer organoids captures dis- ease heterogeneity. Cell 172, 373–386 e310.

Sakahara, M., Okamoto, T., Oyanagi, J., Takano, H., Natsume, Y., Yamanaka, H., Kusama, D., Fusejima, M., Tanaka, N., Mori, S., et al. (2019). IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci. 110, 1293–1305.

Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange, D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265.

Schepers, A.G., Snippert, H.J., Stange, D.E., van den Born, M., van Es, J.H., van de Wetering, M., and Clevers, H. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal ade- nomas. Science 337, 730–735.

Schlicker, A., Ellappalayam, A., Beumer, I.J., Snel, M.H.J., Mittem- pergher, L., Diosdado, B., Dreezen, C., Tian, S., Salazar, R., Loupa- kis, F., et al. (2020). Investigating the concordance in molecular subtypes of primary colorectal tumors and their matched synchro- nous liver metastasis. Int. J. Cancer 147, 2303–2315.

Schweiger, T., Liebmann-Reindl, S., Glueck, O., Starlinger, P., Laen- gle, J., Birner, P., Klepetko, W., Pils, D., Streubel, B., and Hoetze- necker, K. (2018). Mutational profile of colorectal cancer lung me- tastases and paired primary tumors by targeted next generation sequencing: implications on clinical outcome after surgery. J. Thorac. Dis. 10, 6147–6157.

Sensorn, I., Sirachainan, E., Chamnanphon, M., Pasomsub, E., Tra- chu, N., Supavilai, P., Sukasem, C., and Pinthong, D. (2013). Asso- ciation of CYP3A4/5, ABCB1 and ABCC2 polymorphisms and clin- ical outcomes of Thai breast cancer patients treated with tamoxifen. Pharmgenomics Pers Med. 6, 93–98.

Sensorn, I., Sukasem, C., Sirachainan, E., Chamnanphon, M., Pa- somsub, E., Trachu, N., Supavilai, P., Pinthong, D., and Wongwai- sayawan, S. (2016). ABCB1 and ABCC2 and the risk of distant metastasis in Thai breast cancer patients treated with tamoxifen. Onco Targets Ther. 9, 2121–2129.

Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fu- jii, M., Date, S., Sugimoto, S., Kanai, T., and Sato, T. (2017). Visual- ization and targeting of LGR5(+) human colon cancer stem cells. Nature 545, 187–192.

Signer, R.A., Magee, J.A., Salic, A., and Morrison, S.J. (2014). Hae- matopoietic stem cells require a highly regulated protein synthesis rate. Nature 509, 49–54.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U S A 102, 15545–15550.

Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E.J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., et al. (2016). In vivo genome editing via CRISPR/Cas9 mediated homol- ogy-independent targeted integration. Nature 540, 144–149.

Taniguchi, K., Wada, M., Kohno, K., Nakamura, T., Kawabe, T., Ka- wakami, M., Kagotani, K., Okumura, K., Akiyama, S., and Kuwano, M. (1996). A human canalicular multispecific organic anion trans- porter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res. 56, 4124–4129.

Tieng, F.Y.F., Baharudin, R., Abu, N., Mohd Yunos, R.I., Lee, L.H., and Ab Mutalib, N.S. (2020). Single cell transcriptome in colorectal cancer-current updates on its application in metastasis, chemore- sistance and the roles of circulating tumor cells. Front. Pharmacol. 11, 135.

Tuveson, D., and Clevers, H. (2019). Cancer modeling meets hu- man organoid technology. Science 364, 952–955.

van de Wetering, M., Francies, H.E., Francis, J.M., Bounova, G., Iorio, F., Pronk, A., van Houdt, W., van Gorp, J., Taylor-Weiner, A., Kester, L., et al. (2015). Prospective derivation of a living orga- noid biobank of colorectal cancer patients. Cell 161, 933–945.

van der Flier, L.G., Haegebarth, A., Stange, D.E., van de Wetering, M., and Clevers, H. (2009a). OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17.

van der Flier, L.G., van Gijn, M.E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D.E., Begthel, H., van den Born, M., Guryev, V., Oving, I., et al. (2009b). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912.

Vermeulen, L., De Sousa, E.M.F., van der Heijden, M., Cameron, K., de Jong, J.H., Borovski, T., Tuynman, J.B., Todaro, M., Merz, C., Ro- dermond, H., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476.

Vignot, S., Lefebvre, C., Frampton, G.M., Meurice, G., Yelensky, R., Palmer, G., Capron, F., Lazar, V., Hannoun, L., Miller, V.A., et al. (2015). Comparative analysis of primary tumour and matched me- tastases in colorectal cancer patients: evaluation of concordance between genomic and transcriptional profiles. Eur. J. Cancer 51, 791–799.

Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fernandez- Mateos, J., Khan, K., Lampis, A., Eason, K., Huntingford, I., Burke, R., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920– 926.

Weeber, F., van de Wetering, M., Hoogstraat, M., Dijkstra, K.K., Krijgsman, O., Kuilman, T., Gadellaa-van Hooijdonk, C.G., van der Velden, D.L., Peeper, D.S., Cuppen, E.P., et al. (2015). Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl. Acad. Sci. U S A 112, 13308–13311.

Xie, S.M., Fang, W.Y., Liu, T.F., Yao, K.T., and Zhong, X.Y. (2010). Association of ABCC2 and CDDP-resistance in two sublines resis- tant to CDDP derived from a human nasopharyngeal carcinoma cell line. J. Oncol. 2010, 915046.

Xie, T., Cho, Y.B., Wang, K., Huang, D., Hong, H.K., Choi, Y.L., Ko, Y.H., Nam, D.H., Jin, J., Yang, H., et al. (2014). Patterns of somatic alterations between matched primary and metastatic colorectal tu- mors characterized by whole-genome sequencing. Genomics 104, 234–241.

Yan, K.S., Janda, C.Y., Chang, J., Zheng, G.X.Y., Larkin, K.A., Luca, V.C., Chia, L.A., Mah, A.T., Han, A., Terry, J.M., et al. (2017). Non-equivalence of Wnt and R-spondin ligands during Lgr5(+) intesti- nal stem-cell self-renewal. Nature 545, 238–242.

Yang, Q., Bermingham, N.A., Finegold, M.J., and Zoghbi, H.Y. (2001). Requirement of Math1 for secretory cell lineage commit- ment in the mouse intestine. Science 294, 2155–2158.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る