リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「青色光照射下での自励振動により駆動する薄板状微結晶の水中遊泳とその粗視化モデルによる理解」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

青色光照射下での自励振動により駆動する薄板状微結晶の水中遊泳とその粗視化モデルによる理解

小原, 一馬 北海道大学

2022.03.24

概要

生き物は、エネルギーを絶えず消費して自身の身体を動かし、周囲の環境(地面や流体)に仕事をして動き回っている。例えば、水棲生物を考えると、魚は尾ビレを、微生物は鞭毛、繊毛といった身体の一部分を繰り返し動かし、推進している。この挙動を相対的に捉えると、体の一部分を動かして水に仕事を行い、周りの水に流れを形成している。

生き物が行う水中での自己推進を、人工的に創り出すことはできないだろうか。例えば、電動モーターやプロペラ・パドルなどを組み立てた魚型ロボットは既に実用化されている。それに対して、人工の機械を目に見えないサイズまで小型化して、ミリ/マイクロメートルサイズにすることは、困難である1。推進運動をする小型ロボットは、”microbot”や”microrobot”と名付けられ、効率のよい動きを示すものを目標に、生物の動きを解析し、作製されている1-3。

水中で“microbot”を動かすことを考えると、そのために乗り越えなければいけない壁がある。Feynmanは、1983年に行った講演の中で、自由に泳ぐことのできる小さな機械の問題点として、エネルギーの供給と装置の制御の難しさを挙げた4。Feynmanはその解決方法として、磁場や光をエネルギー源にした、粘性媒体を掘り進められるようなS字型のフィンを駆動部に用いることを提案した。

続いて、Sittiらは、小さな機械である“microbot”を動かすときの困難な点として、推進するための実効的な力が小さいこと、その動きの制御が難しいことを挙げた3。サイズが小さくなればなるほど、物体の熱揺らぎや周囲流体の粘性の影響が大きくなる。その結果、一方向に運動するための力を取り出せず、運動の総和として変位が0になる。そこで、Sittiらは、”microbot”に必要な性質として「自律性」を挙げた3。また、Gompperらも、アクティブマター実現の鍵は、その自律性にあること、すなわち、エネルギーを持続的に消費することで実現される非平衡状態をいかにして作り出すかにあると述べている5。これは、小さいサイズの物体が、ある流体中で、一方向の推進運動によって十分な距離を進むためには、その物体自身が注入されたエネルギーを変換して継続的に稼働する必要があることを意味する。

このように、マイクロメートルオーダーの小さい物体を一方向推進させるための課題は、研究者間で共通の認識が持たれている。どのようにして自律性を実現し、粘性の強い周囲環境でどのように物体の動きを制御するかという点である。

本論文では、粘性支配的な環境下で自律的に推進する物体の創出を目指した著者の研究について論じる。具体的には、エネルギーを定常的に消費した自律振動によって駆動するマイクロメートルオーダーの物体の水中での遊泳運動と、その粗視化モデルによる理解について著述する。

参考文献

1 Palagi, S. , Fischer, P. Bioinspired microrobots. Nature Reviews Materials 3, 113 (2018).

2 Nelson, B. J., Kaliakatsos, I. K. , Abbott, J. J. Microrobots for minimally invasive medicine. Annual review of biomedical engineering 12, 55-85 (2010).

3 Hines, L., Petersen, K., Lum, G. Z. , Sitti, M. Soft actuators for small‐scale robotics. Advanced materials 29, 1603483 (2017).

4 Feynman, R. Infinitesimal machinery. Journal of Microelectromechanical Systems 2, 4-14 (1993).

5 Gompper, G. et al. The 2020 motile active matter roadmap. Journal of Physics: Condensed Matter 32, 193001 (2020).

6 東昭. 生物の動きの事典. (朝倉書店, 2018).

7 田中一朗 , 永井實. 抵抗と推進の流体力学. (シップ・アンド・オー シャン財団, 1996).

8 日本化学会. 新実験化学講座. (丸善, 1975).

9 Childress, S. Mechanics of swimming and flying. Vol. 2 (Cambridge University Press, 1981).

10 谷下一夫 , 山口隆美. 生物流体力学. (朝倉書店, 2012).

11 佐野理. 連続体の力学. (裳華房, 2000).

12 西尾実, 岩渕悦太郎 , 水谷静夫. 岩波 国語辞典 第四版. (岩波書店, 1986).

13 Qiu, T. et al. Swimming by reciprocal motion at low Reynolds number. Nature communications 5, 1-8 (2014).

14 Maeda, S., Hara, Y., Sakai, T., Yoshida, R. , Hashimoto, S. Self‐walking gel. Advanced Materials 19, 3480-3484 (2007).

15 Kawamura, R., Kakugo, A., Osada, Y. , Gong, J. P. Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules. Nanotechnology 21, 145603 (2010).

16 Hamilton, J. K., Gilbert, A. D., Petrov, P. G. , Ogrin, F. Y. Torque driven ferromagnetic swimmers. Physics of Fluids 30, 092001 (2018).

17 Gao, W., Sattayasamitsathit, S., Manesh, K. M., Weihs, D. , Wang, J. Magnetically powered flexible metal nanowire motors. Journal of the American Chemical Society 132, 14403-14405 (2010).

18 Liao, P., Xing, L., Zhang, S. , Sun, D. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small 15, 1901197 (2019).

19 Li, T. et al. Highly efficient freestyle magnetic nanoswimmer. Nano letters 17, 5092-5098 (2017).

20 Li, T. et al. Magnetically propelled fish‐like nanoswimmers. Small 12, 6098-6105 (2016).

21 Jang, B. et al. Undulatory locomotion of magnetic multilink nanoswimmers. Nano letters 15, 4829-4833 (2015).

22 Dong, R., Zhang, Q., Gao, W., Pei, A. , Ren, B. Highly efficient light-driven TiO2–Au Janus micromotors. ACS nano 10, 839-844 (2016).

23 Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society 126, 13424-13431 (2004).

24 Baker, R. et al. Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion. Nanoscale 11, 10944-10951 (2019).

25 Gray, J. Studies in animal locomotion: VI. The propulsive powers of the dolphin. Journal of experimental biology 13, 192-199 (1936).

26 Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. Journal of experimental biology 35, 109-133 (1958).

27 Lighthill, M. Note on the swimming of slender fish. Journal of fluid Mechanics 9, 305-317 (1960).

28 Huang, C. et al. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Scientific reports 5, 1-8 (2015).

29 Rogóż, M., Zeng, H., Xuan, C., Wiersma, D. S. , Wasylczyk, P. Light‐ driven soft robot mimics caterpillar locomotion in natural scale. Advanced Optical Materials 4, 1689-1694 (2016).

30 Gelebart, A. H. et al. Making waves in a photoactive polymer film. Nature 546, 632-636 (2017).

31 Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. , Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature materials 3, 307-310 (2004).

32 Palagi, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nature materials 15, 647-653 (2016).

33 Uchida, E., Azumi, R. , Norikane, Y. Light-induced crawling of crystals on a glass surface. Nature communications 6, 1-7 (2015).

34 Taniguchi, T. et al. Walking and rolling of crystals induced thermally by phase transition. Nature communications 9, 1-8 (2018).

35 Ge, F. , Zhao, Y. A new function for thermal phase transition-based polymer actuators: autonomous motion on a surface of constant temperature. Chemical science 8, 6307-6312 (2017).

36 Yang, Y. et al. Reprocessable thermoset soft actuators. Angewandte Chemie International Edition 58, 17474-17479 (2019).

37 Da Cunha, M. P. et al. A self-sustained soft actuator able to rock and roll. Chemical Communications 55, 11029-11032 (2019).

38 Onoda, M., Ueki, T., Tamate, R., Shibayama, M. , Yoshida, R. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nature communications 8, 1-8 (2017).

39 Fournier-Bidoz, S., Arsenault, A. C., Manners, I. , Ozin, G. A. Synthetic selfpropelled nanorotors. Chemical Communications, 441-443 (2005).

40 Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862-865 (2005).

41 Zhang, L. Characterizing the swimming properties of artificial bacterial flagella. Nano letters 9, 3663-3667 (2009).

42 Tottori, S. , Nelson, B. J. Controlled Propulsion of Two‐Dimensional Microswimmers in a Precessing Magnetic Field. Small 14, 1800722 (2018).

43 Wang, X. et al. MOFBOTS: metal–organic‐framework‐based biomedical microrobots. Advanced Materials 31, 1901592 (2019).

44 Li, Y.-H. , Chen, S.-C. Flexibility of undulating magnetic microbeads swimmers. AIP Advances 9, 125232 (2019).

45 Mateos-Maroto, A., Guerrero-Martínez, A., Rubio, R., Ortega, F. , MartínezPedrero, F. Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism. ACS applied materials , interfaces 10, 29367-29377 (2018).

46 Gao, W. et al. Bioinspired helical microswimmers based on vascular plants. Nano letters 14, 305-310 (2014).

47 Li, J. et al. Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 6, 9415-9420 (2014).

48 Serrano, P., Decanini, D., Leroy, L., Couraud, L. , Hwang, G. Multiflagella artificial bacteria for robust microfluidic propulsion and multimodal micromanipulation. Microelectronic Engineering 195, 145-152 (2018).

49 Chen, X.-Z. et al. Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Materials Horizons 6, 1512-1516 (2019).

50 Huang, H.-W., Sakar, M. S., Petruska, A. J., Pané, S. , Nelson, B. J. Soft micromachines with programmable motility and morphology. Nature communications 7, 1-10 (2016).

51 Lighthill, M. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Communications on pure and applied mathematics 5, 109-118 (1952).

52 Blake, J. R. A spherical envelope approach to ciliary propulsion. Journal of Fluid Mechanics 46, 199-208 (1971).

53 Brennen, C. , Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics 9, 339-398 (1977).

54 Purcell, E. M. LIFE AT LOW REYNOLDS-NUMBER. American Journal of Physics 45, 3-11, doi:10.1119/1.10903 (1977).

55 Becker, L. E., Koehler, S. A. , Stone, H. A. On self-propulsion of micromachines at low Reynolds number: Purcell's three-link swimmer. Journal of fluid mechanics 490, 15-35 (2003).

56 Tam, D. , Hosoi, A. E. Optimal stroke patterns for Purcell’s three-link swimmer. Physical Review Letters 98, 068105 (2007).

57 Or, Y. Asymmetry and stability of shape kinematics in microswimmers’ motion. Physical review letters 108, 258101 (2012).

58 Calero, C. et al. Direct measurement of Lighthill's energetic efficiency of a minimal magnetic microswimmer. Nanoscale 11, 18723-18729 (2019).

59 Keim, N. C., Garcia, M. , Arratia, P. E. Fluid elasticity can enable propulsion at low Reynolds number. Physics of Fluids 24, 081703 (2012).

60 Lauga, E. , Bartolo, D. No many-scallop theorem: Collective locomotion of reciprocal swimmers. Physical Review E 78, 030901 (2008).

61 Normand, T. , Lauga, E. Flapping motion and force generation in a viscoelastic fluid. Physical Review E 78, 061907 (2008).

62 Gonzalez-Rodriguez, D. , Lauga, E. Reciprocal locomotion of dense swimmers in Stokes flow. Journal of Physics: Condensed Matter 21, 204103 (2009).

63 Riley, E. E. , Lauga, E. Enhanced active swimming in viscoelastic fluids. EPL (Europhysics Letters) 108, 34003 (2014).

64 Najafi, A. , Golestanian, R. Simple swimmer at low Reynolds number: Three linked spheres. Physical Review E 69, 4 (2004).

65 Golestanian, R. , Ajdari, A. Analytic results for the three-sphere swimmer at low Reynolds number. Physical Review E 77, 036308 (2008).

66 Polotzek, K. , Friedrich, B. M. A three-sphere swimmer for flagellar synchronization. New Journal of Physics 15, 045005 (2013).

67 Grosjean, G., Hubert, M., Lagubeau, G. , Vandewalle, N. Realization of the Najafi-Golestanian microswimmer. Physical Review E 94, 021101 (2016).

68 Hosaka, Y., Yasuda, K., Sou, I., Okamoto, R. , Komura, S. Thermally Driven Elastic Micromachines. Journal of the Physical Society of Japan 86, 4 (2017).

69 Alouges, F., DeSimone, A., Giraldi, L., Zoppello, M. Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers. International Journal of Non-Linear Mechanics 56, 132-141 (2013).

70 Ikegami, T., Kageyama, Y., Obara, K., Takeda, S. Dissipative and Autonomous Square‐Wave Self‐Oscillation of a Macroscopic Hybrid Self‐ Assembly under Continuous Light Irradiation. Angewandte Chemie International Edition 55, 8239-8243 (2016).

71 Kageyama, Y. et al. Light‐driven flipping of azobenzene assemblies―sparse crystal structures and responsive behavior to polarized light. Chemistry–A European Journal (2020).

72 池上智則. 北海道大学大学院総合化学院博士論文. (2018).

73 日本機械学会. 材料力学ハンドブック基礎編. (2008).

74 Yang, L. et al. An Autonomous Soft Actuator with Light-Driven SelfSustained Wavelike Oscillation for Phototactic Self-Locomotion and Power Generation. Advanced Functional Materials 30, 1908842 (2020).

75 Serak, S. et al. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6, 779-783 (2010).

76 Kitagawa, D., Nishi, H., Kobatake, S. Photoinduced twisting of a photochromic diarylethene crystal. Angewandte Chemie 125, 9490-9492 (2013).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る