リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「誘導パルス電圧と磁化過程の測定によるWiegandワイヤの磁気特性の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

誘導パルス電圧と磁化過程の測定によるWiegandワイヤの磁気特性の解明

杨 超 横浜国立大学 DOI:info:doi/10.18880/00014612

2022.05.26

概要

Internet of Things (IoT) is an important part of the new-generation information technology. It provides technical guarantees for improvements in the quality of human life and development of society. However, the power supply required for the monitoring, connecting, and interactive devices in the IoT, for providing real-time collection and control, has become a factor restricting its development.

In this study, a Wiegand sensor (often used for energy harvesting) is proposed as a battery-less sensor or self-powered device, with an objective to mitigate the power supply problem in the monitoring, connecting, and interactive devices. When the Wiegand sensor is used as a power source, it can not only effectively charge devices equipped with batteries, thereby prolonging their battery life, but also provide power to devices without internal batteries, thereby solving problems concerning difficult power supplies and wiring. Thus, the devices used for monitoring, connection, and interaction in the IoT can achieve maintenance-free and long-term operation. Accordingly, Wiegand sensors are expected to be widely used for IoT technologies.

As the magnetic structure of a Wiegand wire cannot be elucidated using a traditional hysteresis curve, in this study, a first-order reversal curve (FORC) was used to analyze the magnetic characteristics of the Wiegand wire. The magnetization reversal of the soft and hard regions in the wire was identified in the FORC diagrams. The two-layer magnetic structure (without marked boundaries) was clarified. In addition, the magnetization reversal of the intermediate layer was discussed. The relationship between the magnetization process of the Wiegand wires and their magnetic structure was obtained. The electrical power of the pulse signal from the Wiegand sensor was maximized as the power supply for the electronic modules so that the energy of the Wiegand sensor pulse signal could meet power consumption requirements. This research, through magnetic-flux guidance experiments on the Wiegand wire, determined that the magnetic flux density through the center of the Wiegand wire, position of the pickup coil, and angle between the Wiegand sensor and magnetic induction line were the main factors affecting the energy of a Wiegand pulse. The relationships between these factors and the energy of the Wiegand pulse were also obtained. Moreover, in this process, an appropriate configuration of the Wiegand wire was identified for when the Wiegand sensor was used as a power source, i.e., in addition to the necessary pickup coil, ferrite beads should be set at both ends of the Wiegand wire. In addition to the external conditions, the energy of the Wiegand pulse was found to be closely related to its own magnetization characteristics.

To further analyze the magnetic characteristics of the Wiegand wire under different excitation magnetic fields, this study considered three typical magnetic fields, i.e., those produced by a rotating magnet with radial magnetization, by a pair of rotating bar magnets with axial magnetization, and by a solenoid coil with AC current. The amplitude, area, and timing of the induced pulse voltage from a pickup coil placed along the Wiegand wire were analyzed. It was found that the energy of the Wiegand pulse depends on the degree of magnetization reversal of the soft layer in the Wiegand wire. Both the initialization and maximum degree of magnetization reversal in the soft layer are detected at the position with the strongest magnetic field. The direction of magnetization reversal propagation is along the direction in which the intensity of the externally applied magnetic field decreases. The velocity of the domain wall movement is faster when the ferrite beads are added to both ends of the Wiegand wire.

Therefore, the magnetic characteristics of a Wiegand wire can be elucidated according to its induced pulse voltage and magnetization measurements, and Wiegand sensors can be designed according to different applications. In particular, when the Wiegand sensors are used as a battery-less sensor or self-powered device, the maximum energy of a single Wiegand pulse can be obtained according to these magnetic characteristics, so as to meet the power consumption requirements of the IoT devices. This is a major research achievement in the field of electronics.

この論文で使われている画像

参考文献

1. B. Jan, H. Farman, M. Khan, M. Talha, I.U. Din, “Designing a smart transportation system: An Internet of things and big data approach”, IEEE Wireless Communications, Vol. 26, pp. 73-79, 2019.

2. S. Balakrishna, M. Thirumaran, V. K. Solanki, “A framework for IoT sensor data acquisition and analysis”, EAI Endorsed Transactions on Internet of Things, Vol.4, pp. 1-13, 2018.

3. M. Bazzani, D. Conzon, A.Scalera, M. Spirito, C. Trainito, “Enabling the IoT paradigm in e-health solutions through the VIRTUS middleware”, In Proceedings of the IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK, pp. 1954-1959, 25-27 June 2012.

4. DARPA, “Research Advances for Near-Zero-Power Sensors”, Available online: www.eetimes.com/darpa-research-advances-for-near-zero-power-sensors/#, accessed January 3, 2022.

5. S. Dhananjay, T. Gaurav, J. Antonio, “A survey of Internet-of-Things: Future vision, architecture, challenges and services”, In Proceedings of the IEEE World Forum on Internet of Things, Seoul, Korea (South), pp. 287-292, 6-8 March 2014.

6. R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, C. V. Hoof, “Energy harvesting for autonomous wireless sensor networks”, IEEE Solid-State Circuits Magazine, Vol. 2, pp. 29-38, 2010.

7. Tony Armstrong, “Green Buildings Get a Boost: Wireless sensor nodes as a key application for energy harvesting”, Analog Devices, Available online: https://www.analog.com/media/en/technical-documentation/tech-articles/green- buildings-get-a-boost.pdf, accessed March 6, 2021.

8. H. Jayakumar, A. Raha, Y. Kim, S. Sutar, W. S. Lee, V. Raghunathan, “Energy- efficient system design for IoT devices”, 21st Asia and South Pacific Design Automation Conference, Macao, China, pp. 298-301, 25-28 January 2016.

9. S. C. Lai, K. Yao, C. Y. Tan, “A Battery-Less Sensor Concept Outputting Perceivable Signal Demonstrated With an Accelerometer”, IEEE Sensors Journal, Vol. 16, pp. 7841-7842, 2016.

10. T. S. Muratkar, A. Bhurane, A. Kothari, “Battery-less Internet of Things -A Survey”, Computer Networks, Vol. 180, 107385, 2020.

11. R. J. M. Vullers, R. V. Schaijk, I. Doms, C. V. Hoof, R. Mertens, “Micropower energy harvesting”, Solid-State Electronics, Vol. 52, pp. 684-693, 2009.

12. M. Nielsen-Lönn, P. Angelov, J.J. Wikner, A. Alvandpour, “Self-powered micro- watt level piezoelectric energy harvesting system with wide input voltage range”, Analog Integrated Circuits and Signal Processing, Vol. 98, pp. 441-451, 2019.

13. S. P. Beeby, M. J. Tudor, N. M. White, “Energy harvesting vibration sources for microsystems applications”, Measurement Science and Technology, Vol. 17, pp. R175-R195, 2006.

14. J. A. Paradiso, T. Starner, “Energy scavenging for mobile and wireless electronics”, IEEE Pervasive Computing, Vol. 4, pp. 18-27, 2005.

15. N. Sharpes, D. Vuckovic, S. Priya, “Floor Tile Energy Harvester for Self-Powered Wireless Occupancy Sensing”, Energy Harvesting and Systems, Vol. 3, pp. 43-60, 2016.

16. A. A. A. Rahman, N. A. Rashid, A. S. A. Aziz, G. Witjaksono, “Design of autonomous micro-solar powered energy harvesting system for self-powered batteries-less wireless sensor mote”, 2012 Electronics Goes Green 2012+, Berlin, Germany, pp. 1-4, 9-12 September 2012.

17. G. KUERS, H.-J. GEVATTER, “Wiegand-Sensoren für Weg- und Geschwindigkeitsmessungen / Wiegand effect position and speed sensors”, Technisches Messen, Vol. 5, pp. 123-129, 1984.

18. Y. Takemura, N. Fujiyama, A. Takebuchi, T. Yamada, “Battery-less hall sensor operated by energy harvesting from a single Wiegand pulse”, IEEE Transactions on Magnetics, Vol. 53, 4002706, 2017.

19. K. Takahashi, A. Takebuchi, T. Yamada, Y. Takemura, “Power supply for medical implants by Wiegand pulse generated from a magnetic wire”, Journal of the Magnetics Society of Japan, Vol. 42, pp. 49-54, 2018.

20. R. Serizawa, T. Yamada, S. Masuda, S. Abe, S. Kohno, F. Kaneko, Y. Takemura, “Energy harvesting derived from magnetization reversal in FeCoV wire”, In Proceedings of the IEEE Sensors, Taipei, Taiwan, pp.28-31, October 2012.

21. C.-C. Chang, J.-Y Chang, “Novel Wiegand effect-based energy harvesting device for linear positioning measurement system”, In Proceedings of the Asia-Pacific Magnetic Recording Conference (APMRC), Shanghai, China, 15-17 November 2018.

22. J. M. D. Coey, “Magnetism and Magnetic Materials”, Cambridge University Press, 2010.

23. N. Spaldin, “Magnetic Materials: Fundamentals and Applications (2nd ed.)”, Cambridge University Press, 2010.

24. Kannan M. Krishnan, “Fundamentals and Applications of Magnetic Materials”, Oxford University Press, 2016.

25. J.R. Wiegand, M. Velinsky, “Bistable Magnetic Device”, U.S. Patent 3,820,090, 25 June 1974.

26. S. Abe, A. Matsushita, “Induced pulse voltage in twisted Vicalloy wire with compound magnetic effect”, IEEE Transactions on Magnetics, Vol. 31, pp. 3152- 3154, 1995.

27. S. Abe, A. Matsushita, M. Naoe, “Dependence of large Barkhausen jump on length of a vicalloy fine wire with torsion stress”, IEEE Transactions on Magnetics, Vol. 34, pp. 1318-1320, 1998.

28. S. Abe, A. Matsushita, K. Negishi, Y. Baba, M. Naoe, “Generation of large Barkhausen jump in bilayered thin film”, IEEE Transactions on Magnetics, Vol. 35, pp. 3634-3636, 1999.

29. S. Abe, A. Matsushita, M. Naoe, “Annealing and torsion stress effect on magnetic anisotropy and magnetostriction of Vicalloy fine wire”, IEEE Transactions on Magnetics, Vol. 33, pp. 3916-3918, 1997.

30. Y. Takemura, T. Aoki, H. Tanaka, T. Yamada, S. Abe, S. Kohno, H. Nakamura, “Control of demagnetizing field and magneto static coupling in FeCoV wires for zero-speed sensor”, IEEE Transactions on Magnetics, Vol. 42, pp. 3300-3302, 2006.

31. C. Radeloff, G. Rauscher, “Pulse generation with short composite wires”, IEEE Transactions on Magnetics, Vol. 21, pp. 1933-1935, 1985.

32. T. Kohara, T. Yamada, S. Abe, S. Kohno, F. Kaneko, Y. Takemura, “Effective excitation by single magnet in rotation sensor and domain wall displacement of FeCoV wire”, Journal of Applied Physics, Vol. 109, 07E531, 2011.

33. C. Yang; T. Sakai, T. Yamada, Z. Song, Y. Takemura, “Improvement of pulse voltage generated by Wiegand sensor through magnetic-flux guidance”, Sensors, Vol. 20, 1408, 2020.

34. A. Matsushita, Y. Takemura, “Power generating device using compound magnetic wire”, Journal of Applied Physics, Vol. 87, pp. 6307-6309, 2000.

35. J.R. Wiegand, “Switchable Magnetic Device”, U.S. Patent 4,247,601, 27 January 1981.

36. S. Abe, A. Matsushita, M. Naoe, “Annealing and torsion stress effect on magnetic anisotropy and magnetostriction of Vicalloy fine wire”, IEEE Transactions on Magnetics, Vol. 33, pp. 3916-3918, 1997.

37. K. Mohri, F. Kinoshita, T. Yamamoto, J. Yamasaki, “Large Barkhausen Effect and Matteucci Effect of Amorphous Magnetostrictive Wires”, IEEE Translation Journal on Magnetics in Japan, Vol. 1, pp. 231-232, 1985.

38. H. Kawamura, K. Mohri, J. Yamasaki, L. Ogasawara, “Large Barkhausen Effect and Matteucci Effect in Cold-Drawn and Torsion Annealed Amorphous Magnetostrictive Wires”, IEEE Translation Journal on Magnetics in Japan, Vol. 3, pp. 609-610, 1988.

39. J. Kravcak, L. Novak, “The analysis of large Barkhausen effect in the FeSiB amorphous wire”, Czechoslovak Journal of Physics, Vol. 52, pp. 175-178, 2002.

40. Y. Takemura, T. Yamada, “Output Properties of Zero-Speed Sensors Using FeCoV Wire and NiFe/CoFe Multilayer Thin Film”, IEEE Sensors Journal, Vol. 6, pp. 1186-1190, 2006.

41. H. Tanaka, T. Yamada, Y. Takemura, S. Abe, S. Kohno, H. Nakamura, “Constant velocity of domain wall propagation independent of applied field strength in vicalloy wire”, IEEE Transactions on Magnetics, Vol. 43, pp. 2397-2399, 2007.

42. S. Saggini, F. Ongaro, L. Corradini, A. Affanni, “Low-power energy harvesting solutions for Wiegand transducers”, IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, pp. 766-779, 2015.

43. A. Takebuchi, T. Yamada, Y. Takemura, “Reduction of vibration amplitude in vibration-type electricity generator using magnetic wire”, Journal of the Magnetics Society of Japan, Vol. 41, pp. 34-40, 2017.

44. Takahashi, K.; Yamada, T.; Takemura, Y. Circuit parameters of a receiver coil using a Wiegand sensor for wireless power transmission. Sensors 2019, 19, 2710.

45. X. Sun, T. Yamada, Y. Takemura, “Output characteristics and circuit modeling of Wiegand sensor”, Sensors, Vol. 19, 2991, 2019.

46. K.J. Sixtus, L. Tonks, “Propagation of large Barkhausen discontinuities. II”, Physical Review, Vol. 42, pp. 419-435, 1932.

47. C. Zou, D. Guo, F. Zhang, J. Meng, H. Miao, W. Jiang, “Magnetization, the susceptibilities and the hysteresis loops of a borophene structure”, Physica E: Low- Dimensional Systems and Nanostructures, Vol. 104, pp.138-145, 2018.

48. M. Teerawat, K. Kanokwan, Y. Rattikorn, L. Yongyut, “Modeling and characterization of hysteresis loops with Preisach hysteron weight modification”, Integrated Ferroelectrics, Vol. 175, pp.33-43, 2016.

49. A.P. Roberts, C.R. Pike, K.L Verosub, “First-Order Reversal Curve Diagrams: A New Tool for Characterizing the Magnetic Properties of Natural Samples”, Journal of Geophysical Research: Solid Earth, Vol. 105, pp. 28461-28475, 2000.

50. V. Franco1, T, Gottschall, K.P. Skokov, O. Gutfleisch, “First-Order Reversal Curve (FORC) Analysis of Magnetocaloric Heusler-Type Alloys”, IEEE Magnetics Letters, Vol. 7, 6602904, 2016.

51. B. Dodrill, J. Lindemuth, C. Radu, H. Reichard, “White Paper: High-temperature FORC study of single- and multi-phase permanent magnets”, MRS Bulletin, Vol. 40, pp. 903–905, 2015.

52. B. Dodrill, P. Ohodnicki, M. McHenry, A. Leary, “High-Temperature First-Order- Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials”, MRS Advances, Vol. 2, pp. 2669-2674, 2017.

53. Robert G. Harrison, “Physical Theory of Ferromagnetic First-Order Return Curves”, IEEE Transactions on Magnetics, Vol. 45, pp. 1922-1939, 2009.

54. D. Cimpoesu, L. Spinu, A. Stancu, “Temperature Dependence of FORC Diagrams in Nanostructured Materials”, IEEE Transactions on Magnetics, Vol. 42, pp. 3165- 3167, 2006.

55. C.R. Pike, A.P. Roberts, M.J. Dekkers, K.L. Verosub, “An investigation of multi- domain hysteresis mechanisms using FORC diagrams”, Physics of the Earth and Planetary Interiors, Vol. 126, pp. 11-25, 2001.

56. N. Gaur, S. N. Piramanayagam, S. L. Maurer, S. E. Steen, H. Yang, C. S. Bhatia, “First-Order Reversal Curve Investigations on the Effects of Ion Implantation in Magnetic Media”, IEEE Transactions on Magnetics, Vol. 48, pp. 2753-2756, 2012.

57. C.R. Pike, A.P. Roberts, K.L. Verosub, “Characterizing interactions in fine magnetic particle systems using first order reversal curves”, Journal of Applied Physics, Vol. 85, pp. 6660-6667, 1999.

58. C. R. Pike, A. P. Roberts, K. L. Verosub, “First-order reversal curve diagrams and thermal relaxation effects in magnetic particles”, Geophysical Journal International, Vol. 145, pp. 721-730, 2001.

59. Q. Wu, J.T. Li, H.L. Ge, Y.H. Tu, M.X. Pan, P.Y. Zhang, “Coercivity mechanism and FORC analysis of MnBi-Based permanent alloy”, Journal of Magnetism and Magnetic Materials, Vol. 503, 166600, 2020.

60. F. Béron, L. Clime, M. Ciureanu, D. Ménard, R. W. Cochrane, A. Yelon, “Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays”, Journal of Nanoscience and Nanotechnology, Vol. 8, pp. 2944-2954, 2008.

61. G. Acton; Q.-Z. Yin; K. L. Verosub, L. Jovane, A, Roth, B. Jacobsen; D. S. Ebel, “Micromagnetic coercivity distributions and interactions in condrules with implications for paleointensities of the early solar system”, Journal of Geophysical Research, Vol. 112, B03S90, 2007.

62. R.J. Harrison, J.M. Feinberg, “FORCinel: An Improved Algorithm for Calculating First-Order-Reversal Curve Distributions Using Locally Weighted Regression Smoothing”, Geochemistry Geophysics Geosystems, Vol. 9, Q05016, 2008.

63. R. Egli, “VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams”, Global and Planetary Change, Vol. 110, pp. 302- 320, 2013.

64. Y. Takemura, A. Matsushita, “Frequency dependence of output voltage generated from bundled compound magnetic wires”, IEEE Transactions on Magnetics, Vol. 37, pp. 2862-2864, 2001.

65. Y. Sang, X. Huang, H. Liu, P. Jin, “A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems”, IEEE Transactions on Magnetics, Vol. 48, pp. 4495- 4498, 2012.

66. A.R. Muxworthy, A.P. Roberts, “First-Order Reversal Curve (FORC) Diagrams”, Encyclopedia of Geomagnetism and Paleomagnetism, pp. 266-272, 2007.

67. A. Mesbahinia, M. Almasi-Kashi, A. Ghasemi, A. Ramazani, “FORC investigation of Co-Ni bulk ferrite consolidated by spark plasma sintering technique”, Journal of Magnetism and Magnetic Materials, Vol. 497, 165976, 2020.

68. D. Heslop, A.R. Muxworthy, “Aspects of calculating first-order-reversal-curve distributions”, Journal of Magnetism and Magnetic Materials, Vol. 288, pp. 155- 167, 2005.

69. A.B. Dobroserdova, P.A. Sánchez, V.E. Shapochkin, D.A. Smagin, V.S. Zverev, S. Odenbach, S.S. Kantorovich, “Measuring FORCs diagrams in computer simulations as a mean to gain microscopic insight”, Journal of Magnetism and Magnetic Materials, Vol. 501, 166393, 2020.

70. C.R. Pike, C.A. Ross, R.T. Scalettar, G. Zimanyi, “First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array”, Physical Review B, Vol. 71, 134407, 2005.

71. C. Carvallo, P. R. Andrew, L. Roman, L. Carlo, K. Catherine, P. Mireille, C. Pierre, “Increasing the efficiency of paleointensity analyses by selection of samples using first-order reversal curve diagrams”, Journal of Geophysical Research: Solid Earth, Vol. 111, B12103, 2006.

72. R. Lavín, J. C. Denardin, J. Escrig, D. Altbir, A. Cortés, H. Gómez, “Magnetic Characterization of Nanowire Arrays Using First Order Reversal Curves”, IEEE Transactions on Magnetics, Vol. 44, pp. 2808-2811, 2008.

73. A.-A. Sima, A.-K. Mohammad, A. Ramazani, “Magnetic characterization of FeCo nanowire arrays by first-order reversal curves”, Current Applied Physics, Vol. 13, pp. 664-669, 2013.

74. F. Béron, L.-P. Carignan, D. Ménard, A. Yelon, “Magnetic Behavior of Ni-Cu Multilayer Nanowire Arrays Studied by First-Order Reversal Curve Diagrams”, IEEE Transactions on Magnetics, Vol. 44, pp. 2745-2748, 2008.

75. C. Rong, Y. Zhang, M.J. Kramer, L.J. Ping, “Correlation between microstructure and first-order magnetization reversal in the SmCo5/α-Fe nanocomposite magnets”, Physics Letters A, Vol. 375, pp. 1329-1332, 2011.

76. O. Sahar, A.-K. Mohammad, A.-A. Sima, “Sn addition effect on magnetic reversibility of Co–Ni alloy nanoparticles based on the FORC results”, Materials Chemistry and Physics, Vol. 243, 122575, 2020.

77. S. Laurentiu, S. Alexandru, “Using Experimental FORC Distribution as Input for a Preisach-Type Model”, IEEE Transactions on Magnetics, Vol. 42, pp. 3159-3161, 2006.

78. R. Montserrat, G. Pedro, M.-G. Cristina, C. M.-G. José, “Quasi-Static AC FORC Measurements for Soft Magnetic Materials and Their Differential Interpretation”, IEEE Transactions on Magnetics, Vol. 53, 2003606, 2017.

79. A.R. Muxworthy, J.G. King, D. Heslop, “Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals”, Journal of Geophysical Research, Vol. 110, B01105, 2005.

80. B. Ilie, S. Alexandru “Reversible Magnetization Processes Evaluation Using High- Order Magnetization Curves”, IEEE Transactions on Magnetics, Vol. 49, 4960- 4964, 2013.

81. C. R. Pike, “First-order reversal-curve diagrams and reversible magnetization”, Physical Review B, Vol. 68, 104424, 2003.

82. A.J. Newell, “FORCs, SORCs and Stoner-Wohlfarth Theory”, In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, USA, GP31B-0748, 8-12 December 2003.

83. G. Muscas, M. Menniti, R. Brucas, P.E. Jönsson, “Mesoscale magnetic rings: complex magnetization reversal uncovered by FORC”, Journal of Magnetism and Magnetic Materials, Vol. 502, 166559, 2020.

84. S. N. Piramanayagam, M, Ranjbar, R, Sbiaa, C. T. Chong, “Magnetic and First- Order Reversal Curve Investigations of Antiferromagnetically Coupled Nanostructures of Co-Pd Multilayers”, IEEE Transactions on Magnetics, Vol. 48, pp. 3410-3413, 2012.

85. C. Carvallo, A.R. Muxworthy, D.J. Dunlop, “First-order reversal curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements”, Physics of the Earth and Planetary Interiors, Vol. 154, pp. 308-322, 2006.

86. C. Carvallo, A. R. Muxworthy, D, J. Dunlop, W. Williams, “Micromagnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite”, Earth and Planetary Science Letters, Vol. 213, pp. 375-390, 2003.

87. A. R. Muxworthy, D. J. Dunlop, “First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature”, Earth and Planetary Science Letters, Vol. 203, pp. 369-382, 2002.

88. A.R. Muxworthy, D. Heslop, W. Williams, “Influence of magnetostatic interactions on first-order-reversal-curve (FORC) diagrams: A micromagnetic approach”, Geophysical Journal International, Vol. 158, pp. 888-897, 2004.

89. A. Muxworthy, W. Williams, D. Virdee, “Effect of magnetostatic interactions on the hysteresis parameters of single-domain and pseudo-single-domain grains”, Journal of Geophysical Research, Vol. 108, 2517, 2003.

90. A. Muxworthy, W. Williams, “Magnetostatic interaction fields in first-order- reversal-curve diagrams”, Journal of Applied Physics, Vol. 97, 063905, 2005.

91. Y. Fang, C. L. Zha, S. bonetti, J. Åkerman, “FORC studies of exchange biased NiFe in L10(111) FePt-based spin valve”, Journal of Physics: Conference Series, Vol. 200, 072002, 2000.

92. M. A. Kashi, A. Ramazani, A. S. Esmaeily, “Magnetostatic Interaction Investigation of CoFe Alloy Nanowires by First-Order Reversal-Curve Diagrams”, IEEE Transactions on Magnetics, Vol. 49, pp. 1167-1171, 2017.

93. S. Okamoto, T. Yomogita, K. Miyazawa, N. Kikuchi, O. Kitakami, N. Watanabe, N. Suita, “First-order Reversal Curve (FORC) Analysis and Its Application for Permanent Magnet Materials”, Materia Japan, Vol. 56, pp. 533-540, 2017.

94. E. Cristian, S. Alexandru, “FORC Analysis of Size Effects in Ising-Type Models of Disordered Magnets”, IEEE Transactions on Magnetics, Vol. 42, pp. 3156-3158, 2006.

95. T. Radu, S. Alexandru, “Statistical Characterization of the FORC Diagram”, IEEE Transactions on Magnetics, Vol. 42, pp. 3246-3248, 2006.

96. R. Malmhall, K. Mohri, F.B. Humphrey, T. Manabe, H. Kawamura, J. Yamasaki, I. Ogasawara, “Bistable magnetization reversal in 50 µm diameter annealed cold drawn amorphous wires”, IEEE Transactions on Magnetics, Vol. 23, pp. 3242-3244, 1987.

97. K. Sitapati, R. Krishnan, “Performance Comparisons of Radial and Axial Field, Permanent-Magnet, Brushless Machines”, IEEE Transactions on Industry Applications, Vol. 37, pp. 1219-1226, 2001.

98. M. Vázquez, C. Gómez-Polo, D.-X. Chen, A. Hernando, “Magnetic bistability of amorphous wires and sensor applications”, IEEE Transactions on Magnetics, Vol. 30, pp. 907-912, 1994.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る