リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transplantation of human iPSC-derived muscle stem cells in the diaphragm of Duchenne muscular dystrophy model mice

Miura, Yasutomo Sato, Masae Kuwahara, Toshie Ebata, Tomoki Tabata, Yasuhiko Sakurai, Hidetoshi 京都大学 DOI:10.1371/journal.pone.0266391

2022.04

概要

Duchenne muscular dystrophy (DMD) is an intractable genetic muscular disorder characterized by the loss of DYSTROPHIN. The restoration of DYSTROPHIN is expected to be a curative therapy for DMD. Because muscle stem cells (MuSCs) can regenerate damaged myofibers with full-length DYSTROPHIN in vivo, their transplantation is being explored as such a therapy. As for the transplanted cells, primary satellite cells have been considered, but donor shortage limits their clinical application. We previously developed a protocol that differentiates induced pluripotent stem cells (iPSCs) to MuSCs (iMuSCs). To ameliorate the respiratory function of DMD patients, cell transplantation to the diaphragm is necessary but difficult, because the diaphragm is thin and rapidly moves. In the present study, we explored the transplantation of iMuSCs into the diaphragm. First, we show direct cell injection into the diaphragm of mouse was feasible. Then, to enhance the engraftment of the transplanted cells in a rapidly moving diaphragm, we mixed polymer solutions of hyaluronic acid, alginate and gelatin to the cell suspension, finding a solution of 20% dissolved hyaluronic acid and 80% dissolved gelatin improved the engraftment. Thus, we established a method for cell transplantation into mouse diaphragm and show that an injectable hyaluronic acid-gelatin solution enables the engraftment of iMuSCs in the diaphragm.

この論文で使われている画像

参考文献

1. Roberts RG. Dystrophins and dystrobrevins. Genome Biology. 2001; 2(4):reviews3006.1. https://doi. org/10.1186/gb-2001-2-4-reviews3006 PMID: 11305946

2. Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet. 2013; 14(6):373–8. Epub 2013/04/24. https://doi.org/10. 1038/nrg3460 PMID: 23609411.

3. Passamano L, Taglia A, Palladino A, Viggiano E, D’Ambrosio P, Scutifero M, et al. Improvement of sur- vival in Duchenne Muscular Dystrophy: retrospective analysis of 835 patients. Acta Myol. 2012; 31 (2):121–5. Epub 2012/10/26. PMID: 23097603; PubMed Central PMCID: PMC3476854.

4. McDonald CM, Henricson EK, Abresch RT, Duong T, Joyce NC, Hu F, et al. Long-term effects of gluco- corticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a pro- spective cohort study. Lancet. 2018; 391(10119):451–61. Epub 2017/11/28. https://doi.org/10.1016/ S0140-6736(17)32160-8 PMID: 29174484.

5. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, pla- cebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009; 8(10):918–28. Epub 2009/08/29. https://doi.org/10.1016/S1474-4422(09)70211-X PMID: 19713152; PubMed Central PMCID: PMC2755039.

6. Echevarr´ıa L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet. 2018; 27(R2):R163–r72. Epub 2018/05/18. https://doi.org/10.1093/hmg/ddy171 PMID: 29771317.

7. Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther. 2018; 26(10):2337–56. Epub 2018/08/11. https://doi.org/10.1016/j.ymthe.2018.07.011 PMID: 30093306; PubMed Central PMCID: PMC6171037.

8. Sun C, Serra C, Lee G, Wagner KR. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol. 2020; 323:113086. Epub 2019/10/23. https://doi.org/10.1016/j.expneurol.2019.113086 PMID: 31639376; PubMed Central PMCID: PMC6899334.

9. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx myofibres from dys- trophin-negative to -positive by injection of normal myoblasts. Nature. 1989; 337(6203):176–9. Epub 1989/01/12. https://doi.org/10.1038/337176a0 PMID: 2643055

10. Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, et al. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles. Stem Cell Reports. 2015; 5(3):419–34. Epub 2015/ 09/10. https://doi.org/10.1016/j.stemcr.2015.07.016 PMID: 26352798; PubMed Central PMCID: PMC4618654.

11. Ikemoto M, Fukada S, Uezumi A, Masuda S, Miyoshi H, Yamamoto H, et al. Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther. 2007; 15(12):2178–85. Epub 2007/08/30. https://doi.org/10.1038/sj.mt.6300295 PMID: 17726457.

12. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005; 309(5743):2064–7. Epub 2005/09/06. https://doi.org/ 10.1126/science.1114758 PMID: 16141372.

13. Zhao M, Tazumi A, Takayama S, Takenaka-Ninagawa N, Nalbandian M, Nagai M, et al. Induced Fetal Human Muscle Stem Cells with High Therapeutic Potential in a Mouse Muscular Dystrophy Model. Stem Cell Reports. 2020; 15(1):80–94. Epub 2020/07/04. https://doi.org/10.1016/j.stemcr.2020.06.004 PMID: 32619494; PubMed Central PMCID: PMC7363940.

14. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenera- tive potential of skeletal muscle stem cells. J Clin Invest. 2010; 120(1):11–9. Epub 2010/01/07. https:// doi.org/10.1172/JCI40373 PMID: 20051632; PubMed Central PMCID: PMC2798695.

15. Han WM, Mohiuddin M, Anderson SE, Garc´ıa AJ, Jang YC. Co-delivery of Wnt7a and muscle stem cells using synthetic bioadhesive hydrogel enhances murine muscle regeneration and cell migration during engraftment. Acta Biomater. 2019; 94:243–52. Epub 2019/06/23. https://doi.org/10.1016/j. actbio.2019.06.025 PMID: 31228633; PubMed Central PMCID: PMC6642840.

16. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, et al. Human iPS cell-engi- neered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Scientific reports. 2014; 4(1):1–7. https://doi.org/10.1038/srep06716 PMID: 25336194

17. Nakajima K, Fujita J, Matsui M, Tohyama S, Tamura N, Kanazawa H, et al. Gelatin Hydrogel Enhances the Engraftment of Transplanted Cardiomyocytes and Angiogenesis to Ameliorate Cardiac Function after Myocardial Infarction. PLoS One. 2015; 10(7):e0133308. Epub 2015/07/18. https://doi.org/10. 1371/journal.pone.0133308 PMID: 26186362; PubMed Central PMCID: PMC4505846.

18. Xu L, Guo Y, Huang Y, Xu Y, Lu Y, Wang Z. Hydrogel materials for the application of islet transplanta- tion. J Biomater Appl. 2019; 33(9):1252–64. Epub 2019/02/23. https://doi.org/10.1177/ 0885328219831391 PMID: 30791850.

19. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. ’Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997; 407(3):313–9. Epub 1997/05/05. https://doi.org/10.1016/s0014-5793(97) 00313-x PMID: 9175875.

20. Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, et al. Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res. 2004; 296(2):245–55. Epub 2004/05/20. https://doi.org/10.1016/j.yexcr.2004. 02.018 PMID: 15149854.

21. Shiomi K, Kiyono T, Okamura K, Uezumi M, Goto Y, Yasumoto S, et al. CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. Gene therapy. 2011; 18(9):857–66. https://doi.org/10.1038/gt.2011.44 PMID: 21490680

22. Matsui H, Fujimoto N, Sasakawa N, Ohinata Y, Shima M, Yamanaka S, et al. Delivery of full-length fac- tor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PloS one. 2014; 9(8):e104957. https://doi.org/10.1371/journal.pone.0104957 PMID: 25126862

23. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to gen- erate integration-free human iPS cells. Nat Methods. 2011; 8(5):409–12. Epub 2011/04/05. https://doi. org/10.1038/nmeth.1591 PMID: 21460823.

24. Nalbandian M, Zhao M, Sasaki-Honda M, Jonouchi T, Lucena-Cacace A, Mizusawa T, et al. Characteri- zation of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell Purification Toward Cell Therapy. Stem Cell Reports. 2021. https://doi.org/10.1016/j.stemcr.2021.03.004 PMID: 33798449

25. Tabei R, Kawaguchi S, Kanazawa H, Tohyama S, Hirano A, Handa N, et al. Development of a trans- plant injection device for optimal distribution and retention of human induced pluripotent stem cellder- ived cardiomyocytes. J Heart Lung Transplant. 2019; 38(2):203–14. Epub 2019/01/30. https://doi.org/ 10.1016/j.healun.2018.11.002 PMID: 30691596.

26. Anamizu M, Tabata Y. Design of injectable hydrogels of gelatin and alginate with ferric ions for cell transplantation. Acta Biomater. 2019; 100:184–90. Epub 2019/10/08. https://doi.org/10.1016/j.actbio. 2019.10.001 PMID: 31589929.

27. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011; 23 (12):H41–56. Epub 2011/03/12. https://doi.org/10.1002/adma.201003963 PMID: 21394792; PubMed Central PMCID: PMC3730855.

28. Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 2012; 18(7–8):806–15. Epub 2011/10/21. https://doi.org/10.1089/ten.TEA.2011.0391 PMID: 22011213; PubMed Central PMCID: PMC3313609.

29. Ishii K, Sakurai H, Suzuki N, Mabuchi Y, Sekiya I, Sekiguchi K, et al. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell Reports. 2018; 10 (2):568–82. Epub 2018/01/18. https://doi.org/10.1016/j.stemcr.2017.12.013 PMID: 29337118; PubMed Central PMCID: PMC5830886.

30. Boonen KJ, Rosaria-Chak KY, Baaijens FP, van der Schaft DW, Post MJ. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol Cell Physiol. 2009; 296(6):C1338–45. Epub 2009/03/27. https://doi.org/10.1152/ajpcell.00015.2009 PMID:19321742.

31. Zarei-Kheirabadi M, Sadrosadat H, Mohammadshirazi A, Jaberi R, Sorouri F, Khayyatan F, et al. Human embryonic stem cell-derived neural stem cells encapsulated in hyaluronic acid promotes regen- eration in a contusion spinal cord injured rat. Int J Biol Macromol. 2020; 148:1118–29. Epub 2020/01/27. https://doi.org/10.1016/j.ijbiomac.2020.01.219 PMID: 31982534.

32. Lin C, Han G, Ning H, Song J, Ran N, Yi X, et al. Glycine Enhances Satellite Cell Proliferation, Cell Transplantation, and Oligonucleotide Efficacy in Dystrophic Muscle. Mol Ther. 2020; 28(5):1339–58. Epub 2020/03/27. https://doi.org/10.1016/j.ymthe.2020.03.003 PMID: 32209436; PubMed Central PMCID: PMC7210708.

33. Elhussieny A, Nogami K, Sakai-Takemura F, Maruyama Y, Takemura N, Soliman WT, et al. Mesenchy- mal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther. 2021; 12(1):532. Epub 2021/10/11. https://doi.org/10.1186/s13287-021-02594-1 PMID: 34627382; PubMed Central PMCID: PMC8501581.

34. Llufrio EM, Wang L, Naser FJ, Patti GJ. Sorting cells alters their redox state and cellular metabolome. Redox Biol. 2018; 16:381–7. Epub 2018/04/09. https://doi.org/10.1016/j.redox.2018.03.004 PMID: 29627745; PubMed Central PMCID: PMC5952879.

参考文献をもっと見る