リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deep learning enables instant and versatile estimation of rice yield using ground-based RGB images」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deep learning enables instant and versatile estimation of rice yield using ground-based RGB images

Tanaka, Yu Watanabe, Tomoya Katsura, Keisuke Tsujimoto, Yasuhiro Takai, Toshiyuki Tanaka, Takashi Sonam Tashi Kawamura, Kensuke Saito, Hiroki Homma, Koki Mairoua, Salifou Goube Ahouanton, Kokou Ibrahim, Ali Senthilkumar, Kalimuthu Semwal, Vimal Kumar Matute, Edurado Graterol Corredor, Edgar El-Namaky, Raafat Manigbas, Norbie L. Quilang, Edurado Jimmy P. Iwahashi, Yu Nakajima, Kota Takeuchi, Eisuke Saito, Kazuki 京都大学 DOI:10.34133/plantphenomics.0073

2023.07.28

概要

Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-blue images. During ripening stage and at harvest, over 22, 000 digital images were captured vertically downward over the rice canopy from a distance of 0.8 to 0.9 m at 4, 820 harvesting plots having the yield of 0.1 to 16.1 t·ha⁻¹ across 6 countries in Africa and Japan. A convolutional neural network applied to these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The developed model successfully detected genotypic difference and impact of agronomic interventions on yield in the independent dataset. The model also demonstrated robustness against the images acquired at different shooting angles up to 30° from right angle, diverse light environments, and shooting date during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm·pixel−1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production, and yield forecast at several weeks before harvesting.

この論文で使われている画像

参考文献

Downloaded from https://spj.science.org on July 31, 2023

1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D,

Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food

security: The challenge of feeding 9 billion people. Science.

2010;327(5967):812–818.

2. Fischer RA, Byerlee D, Edmeades GO. Crop yields and global

food security: Will yield increase continue to feed the world?

Europe Rev Agric Econom. 2015;43(1):191–192.

3. Saito K, Six J, Komatsu S, Snapp S, Rosenstock T, Arouna A,

Cole S, Taulya G, Vanlauwe SB. Agronomic gain: Definition,

approach and applications. Field Crops Res. 2021;270:Article

108193.

4. Bruke M, Lobell DB. Satellite-based assessment of yield

variation and its determinants in smallholder African systems.

Proc Natl Acad Sci U S A. 2017;114(9):2189–2194.

5. Lobell DB, Azzari G, Burke M, Gourlay S, Jin Z, Kilic T,

Murray S. Eyes in the sky, boots on the ground: Assessing satelliteand ground-based approaches to crop yield measurement and

analysis. Amer J Agr Econ. 2019;102(1):202–219.

6. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature.

2015;521:436–444.

7. The scientific events that shaped the decade. Nature.

2019;576:337–338.

8. Popel M, Tomkova M, Tomek J, Kaiser Ł, Uszkoreit J, Bojar O,

Žabokrtský Z. Transforming machine translation: A deep

learning system reaches news translation quality comparable

to human professionals. Nat Commun. 2020;11:Article 4381.

9. Senior W, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T,

Qin C, Žídek A, Nelson AWR, Bridgland A, et al. Improved

protein structure prediction using potentials from deep

learning. Nature. 2020;577(7792):706–710.

10. Silver D, Schrittwieser J, Simonyan K, Antonoglou I,

Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, et al.

Mastering the game of go without human knowledge. Nature.

2017;550(7676):354–359.

11. Kamilaris FXP-B, Prenafeta-Boldú FX. Deep learning

in agriculture: A survey. Comput Electron Agric.

2018a;147:70–90.

12. Kamilaris FXP-B, Prenafeta-Boldú FX. A review of the use

of convolutional neural networks in agriculture. J Agric Sci.

2018b;156(3):1–11.

13. Liang W, Zhang H, Zhang G, Cao H. Rice blast disease

recognition using a deep convolutional neural network.

Sci Rep. 2019;9:2869.

14. Sharma P, Berwal YPS, Ghai W. Performance analysis of deep

learning CNN models for disease detection in plants using

image segmentation. Inform Process Agric. 2020;7(4):566–574.

15. Rustia DJA, Chao J-J, Chiu L-Y, Wu Y-F, Chung J-Y, Hsu J-C,

Lin T-T. Automatic greenhouse insect pest detection and

recognition based on a cascaded deep learning classification

method. J Appl Entomol. 2021;145(3):206–222.

16. Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B,

Singh A, Sarkar S. An explainable deep machine vision

framework for plant stress phenotyping. Proc Natl Acad Sci U S A.

2018;115(18):4613–4618.

17. Ma J, Li Y, Chen Y, Du K, Zheng F, Zhang L, Sun Z. Estimating

above ground biomass of winter wheat at early growth stages

using digital images and deep convolutional neural network.

Europe J Agron. 2019;103:117–129.

18. Castro W, Marcato J Jr, Polidoro C, Osco LP, Gonçalves W,

Rodrigues L, Santos M, Jank L, Barrios S, Valle C, et al.

Deep learning applied to phenotyping of biomass in

forages with UAV-based RGB imagery. Sensors (Basel).

2020;20(17):Article 4802.

19. Jin X, Li Z, Feng H, Ren Z, Li S. Deep neural network

algorithm for estimating maize biomass based on simulated

sentinel 2A vegetation indices and leaf area index. The Crop J.

2020;8(1):87–97.

20. Gen L, Che T, Ma M, Tan J, Wang H. Corn biomass estimation

by integrating remote sensing ahd long term observation

data base on machine learning techniques. Remote Sens.

2021;13:Article 2352.

21. Apolo-Apolo OE, Pérez-Ruiz M, Martínez-Guanter J,

Egea GA. Mixed data-based deep neural network to

estimate leaf area index in wheat breeding trials. Agronomy.

2020;10(2):Article 175.

22. Toda Y, Okura F, Ito J, Okada S, Kinoshita T, Tsuji H, Saisho D.

Training instance segmentation neural network with synthetic

datasets for crop seed phenotyping. Commun Biol. 2020;3(1):1–12.

23. Xiong X, Duan L, Liu L, Tu H, Yang P, Wu D, Chen G, Xiong L,

Yang W, Liu Q. Panicle-SEG: A robust image segmentation method

for rice panicles in the field based on deep learning and superpixel

optimization. Plant Methods. 2017;13:Article 104.

24. David E, Madec S, Sadeghi-Tehran P, Aasen H, Zheng B, Liu S,

Kirchgessner N, Ishikawa G, Nagasawa K, Badhon MA, et al.

Global wheat head detection (GWHD) dataset: A large and diverse

dataset of high-resolution RGB-labelled images to develop and

benchmark wheat head detection methods. Plant Phenomics. 2020,

2020;Article 3521852.

25. Yang Q, Shi L, Han J, Zha Y, Zhu P. Deep convolutional neural

networks for rice grain yield estimation at the ripening stage

using UAV-based remotely sensed images. Field Crops Res.

2019;235:142–153.

Tanaka et al. 2023 | https://doi.org/10.34133/plantphenomics.0073

34. 35. 36. 37. 38. 39. ground-based sorghum yield estimates in Mali. Remote Sens.

2020;12(1):Article 100.

Zhou X, Zheng HB, Xu XQ, He JY, Ge XK, Yao X, Cheng T,

Zhu Y, Cao WX, Tian YC. Predicting grain yield in rice

using multi-temporal vegetation indices from UAV-based

multispectral and digital imagery. J. Photogramm Remote Sens.

2017;130:246–255.

Wang T, Liu Y, Wang M, Fan Q, Tian H, Qiao X, Li Y.

Application of UAS in crop biomass monitoring: A review.

Front Plant Sci. 2021;12:Article 616689.

Ji Y, Chen Z, Cheng Q, Liu R, Li M, Yan X, Li G, Wang D,

Fu L, Ma Y, et al. Estimation of plant height and yield based

on UAV imagery in faba bean (Vicia faba L.). Plant Methods.

2022;18:Article 26.

Li R, Li M, Ashraf U, Liu S, Zhang J. Exploring the

relationships between yield and yield-related traits for rice

varieties released in China from 1978 to 2017. Front Plant Sci.

2019;10:Article 543.

He K, Zhang X, Ren S, Sun J. Deep residual learning for

image recognition. ArXiv 2015. https://doi.org/10.48550/

arXiv.1512.03385

Lacoste M, Cook S, McNee M, Gale D, Ingram J,

Bellon-Maurel V, MacMillan T, Sylvester-Bradley R,

Kindred D, Bramley R, et al. On-farm experimentation to

transform global agriculture. Nat Food. 2022;3:11–18.

14

Downloaded from https://spj.science.org on July 31, 2023

26. Hang J, Shi L, Yang Q, Chen Z, Yu J, Zha Y. Rice yield

estimation using a CNN-based image-drivin data assimilation

framework. Field Crops Res. 2022;288:Article 108693.

27. GRiSP (Global Rice Science Partnership). Rice almanac. 4th

edition. Los Baños (Philippines): International Rice Research

Institute; 2013.

28. FAO. Guidelines on planning Rice production survey. Rome.

2019.

29. Zeiler MD, Fergus R. Visualizing and understanding

convolutional networks. ArXiv. 2013. https://doi.org/10.48550/

arXiv.1311.2901

30. Lobell DB. The use of satellite data for crop yield gap analysis.

Field Crops Res. 2013;143:56–64.

31. Setiyono TD, Quicho ED, Holecz FH, Khan NI, Romuga G,

Maunahan A, Garcia C, Rala A, Raviz J, Collivignarelli F, et al.

Rice yield estimation using synthetic aperture radar (SAR) and

the ORYZA crop growth model: Development and application

of the system in south and south-east Asian countries. Int J

Remote Sens. 2019;40(21):8093–8124.

32. Jain M, Singh B, Srivastava AAK, Malik RK, McDonald AJ,

Lobell DB. Using satellite data to identify the causes of and

potential solutions for yield gaps in India’s Wheat Belt. Environ

Res Lett. 2017;12(9):Article 094011.

33. Lobell DB, Tommaso SD, You C, Djima IY, Burke M,

Kilic T. Sight for sorghums: Comparisons of satellite- and

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る