リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biomass estimation of World rice (Oryza sativa L.) core collection based on the convolutional neural network and digital images of canopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biomass estimation of World rice (Oryza sativa L.) core collection based on the convolutional neural network and digital images of canopy

Nakajima, Kota Tanaka, Yu Katsura, Keisuke Yamaguchi, Tomoaki Watanabe, Tomoya Shiraiwa, Tatsuhiko 京都大学 DOI:10.1080/1343943X.2023.2210767

2023.05

概要

Above-ground biomass (AGB) is an important indicator of crop productivity. Destructive measurements of AGB incur huge costs, and most non-destructive estimations cannot be applied to diverse cultivars having different canopy architectures. This insufficient access to AGB data has potentially limited improvements in crop productivity. Recently, a deep learning technique called convolutional neural network (CNN) has been applied to estimate crop AGB due to its high capacity for digital image recognition. However, the versatility of the CNN-based AGB estimation for diverse cultivars is still unclear. We established and evaluated a CNN-based estimation method for rice AGB using digital images with 59 diverse cultivars which were mostly in World Rice Core Collection. Across two years at two locations, we took 12, 183 images of 59 cultivars with commercial digital cameras and manually obtained their corresponding AGB. The CNN model was established by using 28 cultivars and showed high accuracy (R2 = 0.95) to the test dataset. We further evaluated the performance of the CNN model by using 31 cultivars, which were not in the model establishment. The CNN model successfully estimated AGB when the observed AGB was lesser than 924 g m−2 (R2 = 0.87), whereas it underestimated AGB when the observed AGB was greater than 924 g m−2 (R2 = 0.02). This underestimation might be improved by adding training data with a greater AGB in further study. The present study indicates that this CNN-based estimation method is highly versatile and could be a practical tool for monitoring crop AGB in diverse cultivars.

この論文で使われている画像

参考文献

Alebele, Y., Zhang, X., Wang, W., Yang, G., Yao, X., Zheng, H.,

Zhu, Y., Cao, W., & Cheng, T. (2020). Estimation of canopy

biomass components in paddy rice from combined optical

and SAR data using multi-target gaussian regressor stacking.

Remote Sensing, 12(16), 2564. https://doi.org/10.3390/

rs12162564

Aparicio, N., Villegas, D., Araus, J. L., Casadesús, J., & Royo, C.

(2002). Relationship between growth traits and spectral

vegetation indices in durum wheat. Crop Science, 42(5),

1547–1555. https://doi.org/10.2135/cropsci2002.1547

Chao, Z. H., Liu, N., Zhang, P. D., Ying, T. Y., & Song, K. H. (2019).

Estimation methods developing with remote sensing infor­

mation for energy crop biomass: A comparative review.

Biomass & Bioenergy, 122, 414–425. https://doi.org/10.1016/

j.biombioe.2019.02.002

Cooper, M., Voss-Fels, K. P., Messina, C. D., Tang, T., &

Hammer, G. L. (2021). Tackling G × E × M interactions to

close on-farm yield-gaps: Creating novel pathways for crop

improvement by predicting contributions of genetics and

management to crop productivity. Theoretical and Applied

Genetics, 134(6), 1625–1644. https://doi.org/10.1007/

s00122-021-03812-3

195

Cossani, C. M., Slafer, G. A., & Savin, R. (2009). Yield and biomass

in wheat and barley under a range of conditions in

a Mediterranean site. Field Crops Research, 112(2–3),

205–213. https://doi.org/10.1016/j.fcr.2009.03.003

de Bossoreille de Ribou, S., Douam, F., Hamant, O.,

Frohlich, M. W., & Negrutiu, I. (2013). Plant science and

agricultural productivity: Why are we hitting the yield

ceiling? Plant Science, 210, 159–176. https://doi.org/10.

1016/j.plantsci.2013.05.010

FAOSTAT http://faostat.fao.org. (2020).

Fuentes, A., Yoon, S., Kim, S., & Park, D. (2017). A robust

deep-learning-based detector for real-time tomato plant

diseases and pests recognition. Sensors, 17(9), 2022.

https://doi.org/10.3390/s17092022

Han, J., Shi, L., Yang, Q., Chen, Z., Yu, J., & Zha, Y. (2022). Rice

yield estimation using a CNN-based image-driven data

assimilation framework. Field Crops Research, 288, 108693.

https://doi.org/10.1016/j.fcr.2022.108693

Hatfield, J. L., & Prueger, J. H. (2010). Value of using different

vegetative indices to quantify agricultural crop characteris­

tics at different growth stages under varying management

practices. Remote Sensing, 2(2), 562–578. https://doi.org/10.

3390/rs2020562

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning

for image recognition. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA

(pp. 770–778).

Jiang, Q., Fang, S., Peng, Y., Gong, Y., Zhu, R., Wu, X., Ma, Y.,

Duan, B., & Liu, J. (2019). UAV-based biomass estimation for

rice-combining spectral, TIN-based structural and meteoro­

logical features. Remote Sensing, 11(7), 890. https://doi.org/

10.3390/rs11070890

Jiang, Y., & Li, C. (2020). Convolutional neural networks for

image-based high-throughput plant phenotyping: A

review. Plant Phenomics, 2020, 1–22. https://doi.org/10.

34133/2020/4152816

Jimenez-Sierra, D. A., Correa, E. S., Benítez-Restrepo, H. D.,

Calderon, F. C., Mondragon, I. F., & Colorado, J. D. (2021).

Novel feature-extraction methods for the estimation of

above-ground biomass in rice crops. Sensors, 21(13), 4369.

https://doi.org/10.3390/s21134369

Kamilaris, A., & Prenafeta-Boldú, F. X. (2017). A review of the use

of convolutional neural networks in agriculture. The Journal

of Agricultural Science, 156(3), 312–322. https://doi.org/10.

1017/S0021859618000436

Kojima, Y., Ebana, K., Fukuoka, S., Nagamine, T., & Kawase, M.

(2005). Development of an RFLP-based rice diversity

research set of germplasm. Breeding Science, 55(4),

431–440. https://doi.org/10.1270/jsbbs.55.431

Long, S. P., Zhu, X. -G., Naidu, S. L., & Ort, D. R. (2006). Can

improvement in photosynthesis increase crop yields? Plant,

Cell & Environment, 29(3), 315–330. https://doi.org/10.1111/j.

1365-3040.2005.01493.x

Ma, J., Li, Y., Chen, Y., Du, K., Zheng, F., Zhang, L., & Sun, Z.

(2019). Estimating above ground biomass of winter wheat at

early growth stages using digital images and deep convolu­

tional neural network. European Journal of Agronomy, 103,

117–129. https://doi.org/10.1016/j.eja.2018.12.004

Marcus, G. (2018). Deep learning: A critical appraisal. Arxiv

Preprint, arXiv:1801(00631), 1–27. https://doi.org/10.48550/

arXiv.1801.00631

196

K. NAKAJIMA ET AL.

Milioto, A., Lottes, P., & Stachniss, C. (2018). Real-time semantic

segmentation of crop and weed for precision agriculture

robots leveraging background knowledge in CNNs. 2018 IEEE

International Conference on Robotics and Automation (ICRA),

Brisbane, Australia, (pp. 2229–2235).

Mochida, K., Koda, S., Inoue, K., Hirayama, T., Tanaka, S.,

Nishii, R., & Melgani, F. (2019). Computer vision-based phe­

notyping for improvement of plant productivity: A machine

learning perspective. GigaScience, 8(1), giy153. https://doi.

org/10.1093/gigascience/giy153

Schreiber, L. V., Atkinson Amorim, J. G., Guimarães, L., Motta

Matos, D., Maciel da Costa, C., & Parraga, A. (2022). Aboveground biomass wheat estimation: Deep learning with

UAV-based RGB images. Applied Artificial Intelligence, 36(1).

https://doi.org/10.1080/08839514.2022.2055392

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. ArXiv Preprint,

arXiv:1409(1556), 1–14. https://doi.org/10.48550/arXiv.1409.

1556

Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). Revisiting

unreasonable effectiveness of data in deep learning era. 2017

IEEE International Conference on Computer Vision (ICCV), Venice,

Italy (pp. 843–852).

Tanaka, Y. (2021). Deep learning-based estimation of rice yield

using RGB image. PREPRINT (Version 1) is Available at

Research Square. https://doi.org/10.21203/rs.3.rs1026695/v1

ten Harkel, J., Bartholomeus, H., & Kooistra, L. (2019). Biomass and

crop height estimation of different crops using UAV-based lidar.

Remote Sensing, 12(1), 17. https://doi.org/10.3390/rs12010017

van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A metaanalysis of projected global food demand and population at

risk of hunger for the period 2010–2050. Nature Food, 2(7),

494–501. https://doi.org/10.1038/s43016-021-00322-9

Wang, Y., & Li, J. (2005). The plant architecture of rice (Oryza

sativa) Plant Mol. Plant Molecular Biology, 59(1), 75–84.

https://doi.org/10.1007/s11103-004-4038-x

Wang, T., Liu, Y., Wang, M., Fan, Q., Tian, H., Qiao, X., & Li, Y.

(2021). Applications of UAS in crop biomass monitoring: A

review. Frontiers in Plant Science, 12, 616689. https://doi.org/

10.3389/fpls.2021.616689

Wang, Y., Zhang, K., Tang, C., Cao, Q., Tian, Y., Zhu, Y., Cao, W., &

Liu, X. (2019). Estimation of rice growth parameters based on

linear mixed-effect model using multispectral images from

fixed-wing unmanned aerial vehicles. Remote Sensing, 11

(11), 1371. https://doi.org/10.3390/rs11111371

Wang, L., Zhou, X., Guo, Z., Dong, W., & Guo, W. (2016).

Estimation of biomass in wheat using random forest regres­

sion algorithm and remote sensing data. The Crop Journal, 4

(3), 212–219. https://doi.org/10.1016/j.cj.2016.01.008

Xu, L., Zhou, L., Meng, R., Zhao, F., Lv, Z., Xu, B., Zeng, L.,

Yu, X., & Peng, S. (2022). An improved approach to

estimate ratoon rice above-ground biomass by integrat­

ing UAV‑based spectral, textural and structural features.

Precision Agriculture, 23(4), 1276–1301. https://doi.org/10.

1007/s11119-022-09884-5

Yamaguchi, T., Tanaka, Y., Imachi, Y., Yamashita, M., &

Katsura, K. (2020). Feasibility of combining deep learning

and RGB images obtained by unmanned aerial vehicle for

leaf area index estimation in rice. Remote Sensing, 13(1), 84.

https://doi.org/10.3390/rs13010084

Yang, Q., Shi, L., Han, J., Zha, Y., & Zhu, P. (2019). Deep con­

volutional neural networks for rice grain yield estimation at

the ripening stage using UAV-based remotely sensed

images. Field Crops Research, 235, 142–153. https://doi.org/

10.1016/j.fcr.2019.02.022

Zhao, K., Tung, C. -W., Eizenga, G. C., Wright, M. H., Ali, M. L.,

Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J.,

McClung, A. M., Bustamante, C. D., & McCouch, S. R. (2011).

Genome-wide association mapping reveals a rich genetic

architecture of complex traits in Oryza sativa. Nature

Communications, 2(1), 467. https://doi.org/10.1038/

ncomms1467

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る