リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Intestinal GPR119 activation by microbiota-derived metabolites impacts feeding behavior and energy metabolism」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Intestinal GPR119 activation by microbiota-derived metabolites impacts feeding behavior and energy metabolism

Igarashi, Miki Hayakawa, Tetsuhiko Tanabe, Haruka Watanabe, Keita Nishida, Akari Kimura, Ikuo 京都大学 DOI:10.1016/j.molmet.2022.101649

2023.01

概要

[Objective] The gastrointestinal tract affects physiological activities and behavior by secreting hormones and generating signals through the activation of nutrient sensors. GPR119, a lipid sensor, is indirectly involved in the secretion of incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, by enteroendocrine cells, while it directly stimulates insulin secretion by pancreatic beta cells. Since GPR119 has the potential to modulate metabolic homeostasis in obesity and diabetes, it has attracted interest as a therapeutic target. However, previous studies have shown that the deletion of Gpr119 in mice does not affect glucose homeostasis and appetite in either basal or high-fat diet-fed conditions. Therefore, the present study aimed to explore the role of GPR119 signaling system in energy metabolism and feeding behavior in mice. [Methods] Gpr119 knockout (KO) mice were generated using CRISPR-Cas9 gene-editing technology, and their feeding behavior and energy metabolism were evaluated and compared with those of wild type (WT) mice. [Results] Upon inducing metabolic stress via food deprivation, Gpr119 KO mice exhibited lower blood glucose levels and a higher body weight reduction compared to WT mice. Although food intake in WT and KO mice were similar under free-feeding conditions, Gpr119 KO mice exhibited increased food intake when they were refed after 24 h of food deprivation. Further, food-deprived Gpr119 KO mice presented shorter post-meal intervals and lower satiety for second and later meals during refeeding, resulting in increased food intake. Associated with this meal pattern, levels of oleoylethanolamide (OEA), an endogenous agonist of GPR119, in the luminal contents of the distal gastrointestinal tract were elevated within 2 h after refeeding. The large-intestinal infusion of OEA prolonged post-meal intervals and increased satiety in the first meal, but not the second meal. On the other hand, infusion of oleic acid increased cecal OEA levels at 2 h from the beginning of infusion, while prolonging post-meal intervals and increasing satiety on the meals that occurred approximately 2 h after the infusion. Cecal OEA levels were low in antibiotic-treated mice, suggesting that the gut microbiota partially synthesizes OEA from oleic acid. [Conclusions] Collectively, our results indicate that the activation of gastrointestinal GPR119 by microbiota-produced OEA derived from oleic acid is associated with satiety control and energy homeostasis under energy shortage conditions.

この論文で使われている画像

参考文献

[1] Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in

health and disease. Physiological Reviews 2020;100(1):171e210.

[2] Canals M, Poole DP, Veldhuis NA, Schmidt BL, Bunnett NW. G-Protein-Coupled

receptors are dynamic regulators of digestion and targets for digestive diseases. Gastroenterology 2019;156(6):1600e16.

[3] Miyamoto J, Igarashi M, Watanabe K, Karaki SI, Mukouyama H, Kishino S,

et al. Gut microbiota confers host resistance to obesity by metabolizing dietary

polyunsaturated fatty acids. Nature Communications 2019;10(1):4007.

[4] Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and

commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 2020;11(3):276e84.

[5] Hansen HS, Rosenkilde MM, Holst JJ, Schwartz TW. GPR119 as a fat sensor.

Trends in Pharmacological Sciences 2012;33(7):374e81.

[6] Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and

function of the enteric nervous system. Journal of Physiology 2014;592(14):

2959e65.

[7] Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. Journal of

Clinical Investigation 2015;125(3):908e17.

[8] Lan H, Vassileva G, Corona A, Liu L, Baker H, Golovko A, et al. GPR119 is

required for physiological regulation of glucagon-like peptide-1 secretion but

not for metabolic homeostasis. Journal of Endocrinology 2009;201(2):219e30.

[9] Panaro BL, Flock GB, Campbell JE, Beaudry JL, Cao X, Drucker DJ. Beta-Cell

inactivation of Gpr119 unmasks incretin dependence of GPR119-mediated

glucoregulation. Diabetes 2017;66(6):1626e35.

14

[10] Higuchi S, Ahmad TR, Argueta DA, Perez PA, Zhao C, Schwartz GJ, et al. Bile

acid composition regulates GPR119-dependent intestinal lipid sensing and

food intake regulation in mice. Gut 2020;69(9):1620e8.

[11] Piomelli D. A fatty gut feeling. Trends in Endocrinology and Metabolism

2013;24(7):332e41.

[12] Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, et al. Food intake

regulates oleoylethanolamide formation and degradation in the proximal small

intestine. Journal of Biological Chemistry 2007;282(2):1518e28.

[13] Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, et al. The lipid

messenger OEA links dietary fat intake to satiety. Cell Metabolism 2008;8(4):

281e8.

[14] Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese

rats. Neuropharmacology 2005;48(8):1147e53.

[15] Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for

oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 2009;58(5):1058e66.

[16] Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits

obesity. Journal of Clinical Investigation 2014;124(8):3391e406.

[17] Dosoky NS, Guo L, Chen Z, Feigley AV, Davies SS. Dietary fatty acids control

the species of N-Acyl-Phosphatidylethanolamines synthesized by therapeutically modified bacteria in the intestinal tract. ACS Infectious Diseases

2018;4(1):3e13.

[18] Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, et al.

Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017;549(7670):48e53.

[19] Gaetani S, Oveisi F, Piomelli D. Modulation of meal pattern in the rat by the

anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology

2003;28(7):1311e6.

[20] Igarashi M, Watanabe K, Tsuduki T, Kimura I, Kubota N. NAPE-PLD controls

OEA synthesis and fat absorption by regulating lipoprotein synthesis in an

in vitro model of intestinal epithelial cells. The FASEB Journal 2019;33(3):

3167e79.

[21] Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut

microbiota suppresses insulin-mediated fat accumulation via the short-chain

fatty acid receptor GPR43. Nature Communications 2013;4:1829.

[22] Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, et al. Free

fatty acids regulate gut incretin glucagon-like peptide-1 secretion through

GPR120. Nature Medicine 2005;11(1):90e4.

[23] Svendsen B, Pedersen J, Albrechtsen NJ, Hartmann B, Torang S, Rehfeld JF,

et al. An analysis of cosecretion and coexpression of gut hormones from male

rat proximal and distal small intestine. Endocrinology 2015;156(3):847e57.

[24] Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJH.

Oleic acid-derived oleoylethanolamide: a nutritional science perspective.

Progress in Lipid Research 2017;67:1e15.

[25] Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, et al.

An anorexic lipid mediator regulated by feeding. Nature 2001;414(6860):209e

12.

[26] Oveisi F, Gaetani S, Eng KT, Piomelli D. Oleoylethanolamide inhibits food intake

in free-feeding rats after oral administration. Pharmacological Research

2004;49(5):461e6.

[27] Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. Regulation of food

intake by oleoylethanolamide. Cellular and Molecular Life Sciences

2005;62(6):708e16.

[28] Moss CE, Glass LL, Diakogiannaki E, Pais R, Lenaghan C, Smith DM, et al.

Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary

murine L-cells. Peptides 2016;77:16e20.

[29] Steinert RE, Beglinger C, Langhans W. Intestinal GLP-1 and satiation: from

man to rodents and back. International Journal of Obesity 2016;40(2):198e

205.

MOLECULAR METABOLISM 67 (2023) 101649 Ó 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.molecularmetabolism.com

[30] Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake:

physiological relevance and emerging mechanisms. Peptides 2020;131:

170342.

[31] Panaro BL, Yusta B, Matthews D, Koehler JA, Song Y, Sandoval DA, et al.

Intestine-selective reduction of Gcg expression reveals the importance of the

distal gut for GLP-1 secretion. Molecular Metabolism 2020;37:100990.

[32] Lou PH, Gustavsson N, Wang Y, Radda GK, Han W. Increased lipolysis and

energy expenditure in a mouse model with severely impaired glucagon

secretion. PLoS One 2011;6(10):e26671.

[33] Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, et al. GPR119 agonism

increases glucagon secretion during insulin-induced hypoglycemia. Diabetes

2018;67(7):1401e13.

[34] Suárez J, Rivera P, Arrabal S, Crespillo A, Serrano A, Baixeras E, et al.

Oleoylethanolamide enhances b-adrenergic-mediated thermogenesis and

white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat.

Dis Model Mech 2014;7(1):129e41.

[35] Miller S, Hu SS, Leishman E, Morgan D, Wager-Miller J, Mackie K, et al.

A GPR119 signaling system in the murine eye regulates intraocular pressure in

a sex-dependent manner. Investigative Ophthalmology & Visual Science

2017;58(7):2930e8.

[36] Odori S, Hosoda K, Tomita T, Fujikura J, Kusakabe T, Kawaguchi Y, et al.

GPR119 expression in normal human tissues and islet cell tumors: evidence

for its islet-gastrointestinal distribution, expression in pancreatic beta and

alpha cells, and involvement in islet function. Metabolism 2013;62(1):70e8.

MOLECULAR METABOLISM 67 (2023) 101649 Ó 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.molecularmetabolism.com

15

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る