リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Low-power-consumption, high-current-density, and propellantless cathode using graphene-oxide-semiconductor structure array」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Low-power-consumption, high-current-density, and propellantless cathode using graphene-oxide-semiconductor structure array

Ryo Furuya Yoshinori Takao Masayoshi Nagao Katsuhisa Murakami 横浜国立大学

2020.04.15

概要

Graphene-oxide-semiconductor (GOS) planar-type electron sources—which consist of a graphene electrode layer, a thin SiO2 insulator, and a Si substrate—can be driven by applying gate biases of 5–15 V to produce high emission current densities of 10–100 mA/cm2. In this study, propellantless cathodes using GOS electron sources are developed for aerospace applications. Because a single emission site usually has an area smaller than 100 μm × 100 μm, its maximum emission current is below 10 μA. To increase the emission current to several milliamperes or more, the total emission area must be expanded. However, it is difficult to increase the emission current by merely enlarging a single emission area because the graphene layer acts not only as the gate electrode but also as a series resistor, which means that the emission current density decreases as the effective gate bias decreases. Thus, the optimum relationship between the area of a single emission site and the emission current of the site array is investigated, showing a result that an electron source with hundreds of 100 μm × 100 μm sites on a 3 mm × 3 mm wafer produces an emission current of 6.0 mA at a gate bias of 11.1 V.

この論文で使われている画像

参考文献

15

[1] T. Wekerle, J.B. Pessoa Filho, L.E.V.L. Da Costa, L.G. Trabasso, Status and Trends of

16

Smallsats and their Launch Vehicles - An up-to-date Review, J. Aerosp. Technol. Manag.

17

7 (2017) 269–286. http://dx.doi.org/10.5028/jatm.v9i3.853

22

[2] S. Yoshimoto, S. Nakasuka, Y. Tsuruda, Y. Aoyanagi, T. Tanaka, H. Sahara, T. Ohira, Y.

Araki, I. Mase, M. Ito, V. Kainov, A. Karandaev, O. Silkin, Cluster Launch of Hodoyoshi-

3 and -4 Satellites from Yasny by Dnepr Launch Vehicle, Trans. Jpn. Soc. Aeronaut. Space

Sci., Aerosp. Technol. Jpn. 14 (2016) Pf_35–Pf_43. https://doi.org/10.2322/tastj.14.Pf_35

[3] H. Koizumi, H. Kawahara, K. Yaginuma, J. Asakawa, Y. Nakagawa, Y. Nakamura, S.

Kojima, T. Matsuguma, R. Funase, J. Nakatsuka, K. Komurosaki, Initial Flight Operations

of the Miniature Propulsion System Installed on Small Space Probe: PROCYON, Trans.

Jpn. Soc. Aeronaut. Space Sci., Aerosp. Technol. Jpn. 14 (2016) Pb_13–Pb_22.

https://doi.org/10.2322/tastj.14.Pb_13

10

[4] B.K. Malphrus, K.Z. Brown, J. Garcia, C. Conner, J. Kruth, M.S. Combs, N. Fite, S.

11

McNeil, S. Wilczweski, K. Haught, A. Zucherman, P. Clark, K. Angkasa, N. Richard, T.

12

Hurford, D. Folta, C. Brambora, R. MacDowall, P. Mason, S. Hur-Diaz, J. Breeden, R.

13

Nakamura, A. Martinez, M.M. Tsay, The Lunar IceCube EM-1 Mission: Prospecting the

14

Moon for Water Ice, IEEE Aerosp. Electron. Syst. Mag. 34 (2019) 6–14.

15

https://doi.org/10.1109/MAES.2019.2909384

16

[5] M. Tsay, J. Frongillo, J. Model, J. Zwahlen, L. Paritsky, Maturation of Iodine-Fueled BIT-

17

3 RF Ion Thruster and RF Neutralizer, in: 52nd AIAA, SAE/ASEE Joint Propulsion

18

Conference, 2016, AIAA 2016-4544. https://doi.org/10.2514/6.2016-4544

23

[6] H. Masui, Y. Tashiro, N. Yamamoto, H. Nakashima, I. Funaki, Analysis of Electron and

Microwave Behavior in Microwave Discharge Neutralizer, Trans. Japan Soc. Aero. Space

Sci. 49 (2006) 87–93. https://doi.org/10.2322/tjsass.49.87

[7] M.D. Goebel, M.R. Watkins, K.K. Jameson, LaB6 Hollow Cathodes for Ion and Hall

Thrusters, J. Propul. Power 23 (2007) 552–558. https://doi.org/10.2514/1.25475

[8] H. Koizumi, K. Komurasaki, J. Aoyama, K. Yamaguchi, Development and Flight

Operation of a Miniature Ion Propulsion System, J. Propul. Power 34 (2017) 960–968.

https://doi.org/10.2514/1.B36459

[9] Y. Okawa, S. Kitamura, S. Kawamoto, Y. Iseki, K. Hashimoto, E. Noda, An experimental

10

study on carbon nanotube cathodes for electrodynamic tether propulsion, Acta Astronaut.

11

61 (2007) 989–994. https://doi.org/10.1016/j.actaastro.2006.12.017

12

[10] N. Yamamoto, T. Morita, Y. Ohkawa, M. Nakano, I. Funaki, Ion Thruster Operation with

13

Carbon Nanotube Field Emission Cathode, J. Propul. Power 35 (2019) 490–493.

14

https://doi.org/10.2514/1.B37214

15

[11] C.J. Gasdaska, P.Falkos, V. Hruby, M. Robin, N. Demmons, R. McCormick, D. Spence, J.

16

Young,

17

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004, AIAA 2004-

18

3427. https://doi.org/10.2514/6.2004-3427

“Testing

of

Carbon

Nanotube

24

Field

Emission

Cathodes,

in:

40th

[12] A.A. Fomani, A.I. Akinwande, L. F. Velásquez-García, Resilient, Nanostructured, High-

Current, and Low-Voltage Neutralizers for Electric Propulsion of Small Spacecraft in Low

Earth Orbit, J. Phys.: Conf. Ser. 476 (2013) 012014. https://doi.org/10.1088/1742-

6596/476/1/012014

[13] K.L. Aplina, B.J. Kenta, W. Songb, C. Castellic, Field emission performance of

multiwalled carbon nanotubes for a low-power spacecraft neutraliser, Acta Astronaut. 64

(2009) 875–881. https://doi.org/10.1016/j.actaastro.2008.10.012

10

11

12

[14] J.M. Makela, R.L. Washeleski, L.B. King, Regenerable Field Emission Cathode for

Spacecraft

Neutralization,

J.

Propul.

Power

25

(2009)

970–975.

https://doi.org/10.2514/1.41541

[15] I. Brodie, C.A. Spindt, Vacuum microelectronics, Adv. Electron. Electron Phys. 83 (1992)

1–106. https://doi.org/10.1016/S0065-2539(08)60006-2

13

[16] K. Murakami, S. Tanaka, A. Miyashita, M. Nagao, Y. Nemoto, M. Takeguchi, J. Fujita,

14

Graphene-oxide-semiconductor planar-type electron emission device, Appl. Phys. Lett.

15

108 (2016) 083506. https://doi.org/10.1063/1.4942885

16

[17] K. Murakami, M. Nagao, T. Iijima, Y. Yamada, M. Sasaki, Y. Nemoto, M. Takeguchi,

17

Annealing effect on electron emission properties of graphene-oxide-semiconductor planar-

25

type electron emission devices, in: 30st International Vacuum Nanoelectronics Conference,

2017, FEC-P01. https://doi.org/10.1109/IVNC.2017.8051568

[18] K. Murakami, S. Tanaka, T. Iijima, M. Nagao, Y. Nemoto, M. Takeguchi, Y. Yamada, M.

Sasaki, Electron emission properties of graphene-oxide-semiconductor planar-type

electron

https://doi.org/10.1116/1.5006866

emission

devices,

J.

Vac.

Sci.

Technol.

36

(2018)

02C110.

[19] K. Murakami, J. Miyaji, R. Furuya, M. Adachi, M. Nagao, Y. Neo, Y. Takao, Y. Yamada,

M. Sasaki, H. Mimura, High-performance planar-type electron source based on a graphene-

oxide-semiconductor

10

structure,

Appl.

Phys.

Lett.

114

(2019)

213501.

https://doi.org/10.1063/1.5091585

11

[20] R. Furuya, K. Murakami, M. Nagao, Y. Takao, Improvement of Electron Emission

12

Efficiency of Graphene-Oxide-Semiconductor Planar-Type Electron Sources for

13

Nanosatellite Neutralizers, in: 31st International Vacuum Nanoelectronics Conference,

14

2018, P1-43. https://doi.org/10.1109/IVNC.2018.8519982

15

[21] S.H. Lo, D.A. Buchanan, Y. Taur, W. Wang, Quantum-Mechanical Modeling of Electron

16

Tunneling Current from the Inversion Layer of Ultra-Thin-Oxide nMOSFET’s, IEEE

17

Electr. Device Lett. 18 (1997) 209–211. https://doi.org/10.1109/55.568766

26

[22] K. Yokoo, H. Tanaka, S. Sato, J. Murota, S. Ono, Emission characteristics of metal–oxide–

semiconductor electron tunneling cathode, J. Vac. Sci. Technol. B 11 (1993) 429–432.

https://doi.org/10.1116/1.586877

[23] K. Yokoo, G. Koshita, S. Hanzawa, Y. Abe, Y. Neo, Experiments of highly emissive

metal–oxide–semiconductor electron tunneling cathode, J. Vac. Sci. Technol. B 14 (1996)

2096–2099. https://doi.org/10.1116/1.588878

[24] H. Mimura, Y. Abe, J. Ikeda, K. Tahara, Y. Neo, H. Shimawaki, and K. Yokoo, Resonant

Fowler–Nordheim tunneling emission from metal-oxide-semiconductor cathodes, J. Vac.

Sci. Technol. B 16 (1998) 803–806. https://doi.org/10.1116/1.589909

10

[25] R.G. Forbes, Field emission: New theory for the derivation of emission area from a Fowler–

11

Nordheim

12

https://doi.org/10.1116/1.590588

plot,

J.

Vac.

Sci.

Technol.

13

14

27

17

(1999)

526–553.

...

参考文献をもっと見る