リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Kinetics of denaturation and renaturation processes of double-stranded helical polysaccharide, xanthan in aqueous sodium chloride」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Kinetics of denaturation and renaturation processes of double-stranded helical polysaccharide, xanthan in aqueous sodium chloride

Tomofuji, Yu 大阪大学

2021.09.21

概要

Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements were made for three xanthan samples, a double helical polysaccharide, in 5 or 10 mM aqueous NaCl after rapid temperature change to investigate the kinetics of the conformational change between the ordered and disordered states. After the rapid heating, the CD signal mainly reflecting the carbonyl groups on the side chains quickly changed (<150 s) while the scattering intensity from SAXS around q (magnitude of the scattering vector) = 1 nm−1 changed more gradually, reflecting the main-chain conformation. The difference between CD and SAXS implies us the intermediate conformation which can be regarded as a loose double helix. The SAXS profile in the rapid cooling process showed that the loose double helical structure was constructed within 150 s, but the CD signal slowly changed with around 2 days to recover the native tight double helix.

この論文で使われている画像

参考文献

Bercea, M., & Morariu, S. (2020). Real-time monitoring the order-disorder conformational transition of xanthan gum. Journal of Molecular Liquids, 309, 113168.

Brunchi, C. E., Avadanei, M., Bercea, M., & Morariu, S. (2019). Chain conformation of xanthan in solution as influenced by temperature and salt addition. Journal of Molecular Liquids, 287, 111008.

Burchard, W. (1994). Light Scattering Techniques. In S. B. Ross-Murphy (Ed.), Physical Techniques for the Study of Food Biopolymers (pp. 151-213). Boston, MA: Springer US

Burchard, W., & Kajiwara, K. (1970). The statistics of stiff chain molecules. I. The particle scattering factor. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 316(1525), 185-199.

Camesano, T. A., & Wilkinson, K. J. (2001). Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy. Biomacromolecules, 2(4), 1184-1191.

Capron, I., Alexandre, S., & Muller, G. (1998). An atomic force microscopy study of the molecular organisation of xanthan. Polymer, 39(23), 5725-5730.

Capron, I., Brigand, G., & Muller, G. (1997). About the native and renatured conformation of xanthan exopolysaccharide. Polymer, 38(21), 5289-5295.

Choppe, E., Puaud, F., Nicolai, T., & Benyahia, L. (2010). Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydrate Polymers, 82(4), 1228-1235.

Dalheim, M. Ø., Christensen, B. E., Comesse, S., & Renou, F. (2020). Modification of xanthan in the ordered and disordered states. In A. P. Rauter, B. E. Christensen, L. Somsák, P. Kosma & R. Adamo (Eds.), Recent Trends in Carbohydrate Chemistry (pp. 403-440): Elsevier

Glatter, O., & Kratky, O. (1982). Small Angle X-ray Scattering. London: Academic Press. Grubisic, Z., Rempp, P., & Benoit, H. (1967). A Universal Calibration for Gel Permeation Chromatography. Journal of Polymer Science Part B-Polymer Letters, 5(9pb), 753-&.

Hasegawa, H., Nagata, Y., Terao, K., & Suginome, M. (2017). Synthesis and Solution Properties of a Rigid Helical Star Polymer: Three-Arm Star Poly(quinoxaline-2,3-diyl). Macromolecules, 50(19), 7491-7497.

Holtzer, A. (1955). Interpretation of the Angular Distribution of the Light Scattered by a Polydisperse System of Rods. Journal of Polymer Science, 17(85), 432-434.

Huber, K., & Burchard, W. (1989). Scattering Behavior of Wormlike Star Macromolecules. Macromolecules, 22(8), 3332-3336.

Hublik, G. (2012). Xanthan. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 221-229). Amsterdam: Elsevier

Ikeda, S., Gohtani, S., Nishinari, K., & Zhong, Q. X. (2012). Single Molecules and Networks of Xanthan Gum Probed by Atomic Force Microscopy. Food Science and Technology Research, 18(5), 741-745.

Ishida, S., Yoshida, T., & Terao, K. (2019). Complex formation of a triple-helical peptide with sodium heparin. Polymer Journal, 51(11), 1181-1187.

Jiang, X. Y., Kitamura, S., Sato, T., & Terao, K. (2017). Chain Dimensions and Stiffness of Cellulosic and Amylosic Chains in an Ionic Liquid: Cellulose, Amylose, and an Amylose Carbamate in BmimCl. Macromolecules, 50(10), 3980-3985.

Kawaguchi, S., Imai, G., Suzuki, J., Miyahara, A., & Kitano, T. (1997). Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer, 38(12), 2885-2891.

Kitamura, S., Takeo, K., Kuge, T., & Stokke, B. T. (1991). Thermally induced conformational transition of double-stranded xanthan in aqueous salt solutions. Biopolymers, 31(11), 1243- 1255.

Kool, M. M., Gruppen, H., Sworn, G., & Schols, H. A. (2013). Comparison of xanthans by the relative abundance of its six constituent repeating units. Carbohydrate Polymers, 98(1), 914-921.

Kratky, O., & Porod, G. (1949). Rontgenuntersuchung Geloster Fadenmolekule. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 68(12), 1106-1122.

Kumar, A., Rao, K. M., & Han, S. S. (2018). Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydrate Polymers, 180, 128-144.

Liu, W., & Norisuye, T. (1988a). Order-Disorder Conformation Change of Xanthan in 0.01m Aqueous Sodium-Chloride - Dimensional Behavior. Biopolymers, 27(10), 1641-1654.

Liu, W., & Norisuye, T. (1988b). Thermally Induced Conformation Change of Xanthan - Interpretation of Viscosity Behavior in 0.01-M Aqueous Sodium-Chloride. International Journal of Biological Macromolecules, 10(1), 44-50.

Liu, W., Sato, T., Norisuye, T., & Fujita, H. (1987). Thermally Induced Conformational Change of Xanthan in 0.01m Aqueous Sodium-Chloride. Carbohydrate Research, 160, 267-281.

Matsuda, Y., Biyajima, Y., & Sato, T. (2009). Thermal Denaturation, Renaturation, and Aggregation of a Double-Helical Polysaccharide Xanthan in Aqueous Solution. Polymer Journal, 41(7), 526-532.

Matsuda, Y., Okumura, K., & Tasaka, S. (2018). Molar mass dependence of structure of xanthan thermally denatured and renatured in dilute solution. Polymer Journal, 50(11), 1043-1049.

Matsuda, Y., Sugiura, F., Mays, J. W., & Tasaka, S. (2015). Atomic force microscopy of thermally renatured xanthan with low molar mass. Polymer Journal, 47(3), 282-285.

Matsuda, Y., Sugiura, F., Okumura, K., & Tasaka, S. (2016). Renaturation behavior of xanthan with high molar mass and wide molar mass distribution. Polymer Journal, 48(5), 653-658.

Matsuo, K., & Gekko, K. (2013). Construction of a Synchrotron-Radiation Vacuum-Ultraviolet Circular-Dichroism Spectrophotometer and Its Application to the Structural Analysis of Biomolecules. Bulletin of the Chemical Society of Japan, 86(6), 675-689.

Matsuo, K., Sakai, K., Matsushima, Y., Fukuyama, T., & Gekko, K. (2003). Optical Cell with a Temperature-Control Unit for a Vacuum-Ultraviolet Circular Dichroism Spectrophotometer. Analytical Sciences, 19(1), 129-132.

Meng, Y., Lyu, F., Xu, X., & Zhang, L. (2020). Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules, 21(5), 1653-1677.

Merino-González, A., & Kozina, A. (2017). Influence of aggregation on characterization of dilute xanthan solutions. International Journal of Biological Macromolecules, 105, 834-842.

Moffat, J., Morris, V. J., Al-Assaf, S., & Gunning, A. P. (2016). Visualisation of xanthan conformation by atomic force microscopy. Carbohydrate Polymers, 148, 380-389.

Morris, E. R. (2019). Ordered conformation of xanthan in solutions and “weak gels”: Single helix, double helix – or both? Food Hydrocolloids, 86, 18-25.

Nakamura, Y., & Norisuye, T. (2004). Scattering function for wormlike chains with finite thickness. Journal of Polymer Science Part B-Polymer Physics, 42(8), 1398-1407.

Nakamura, Y., & Norisuye, T. (2008). Brush-like polymers. In R. Borsali & R. Pecora (Eds.), Soft Matter Characterization (pp. 235-286): Springer Netherlands

Nishinari, K., Turcanu, M., Nakauma, M., & Fang, Y. (2019). Role of fluid cohesiveness in safe swallowing. NPJ Sci Food, 3(1), 5.

Norton, I. T., Goodall, D. M., Frangou, S. A., Morris, E. R., & Rees, D. A. (1984). Mechanism and dynamics of conformational ordering in xanthan polysaccharide. Journal of Molecular Biology, 175(3), 371-394.

Norton, I. T., Goodall, D. M., Morris, E. R., & Rees, D. A. (1980). Kinetic Evidence for Intramolecular Conformational Ordering of the Extracellular Polysaccharide (Xanthan) from Xanthomonas-Campestris. Journal of the Chemical Society, Chemical Communications(12), 545-547.

Okuyama, K., Arnott, S., Moorhouse, R., Walkinshaw, M. D., Atkins, E. D. T., & Wolf-Ullish, C. H. (1980). Fiber Diffraction Studies of Bacterial Polysaccharides. In Fiber Diffraction Methods (pp. 411-427): American Chemical Society

Otsubo, M., & Terao, K. (2021). Kinetics of the complex formation of silica nanoparticles with collagen. Polymer Journal, in press. DOI:10.1038/s41428-021-00553-4.

Oviatt, H. W., & Brant, D. A. (1994). Viscoelastic Behavior of Thermally Treated Aqueous Xanthan Solutions in the Semidilute Concentration Regime. Macromolecules, 27(9), 2402- 2408.

Papagiannopoulos, A., Sotiropoulos, K., & Pispas, S. (2016). Particle tracking microrheology of the power-law viscoelasticity of xanthan solutions. Food Hydrocolloids, 61, 201-210.

Papagiannopoulos, A., Sotiropoulos, K., & Radulescu, A. (2016). Scattering investigation of multiscale organization in aqueous solutions of native xanthan. Carbohydrate Polymers, 153, 196-202.

Pasch, H. (2012). 2.03 - Chromatography A2 - Matyjaszewski, Krzysztof. In M. Möller (Ed.),

Polymer Science: A Comprehensive Reference (pp. 33-64). Amsterdam: Elsevier Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397-430.

Sato, T., Kojima, S., Norisuye, T., & Fujita, H. (1984). Double-Stranded Helix of Xanthan in Dilute-Solution - Further Evidence. Polymer Journal, 16(5), 423-429.

Sato, T., & Matsuda, Y. (2009). Macromolecular Assemblies in Solution: Characterization by Light Scattering. Polymer Journal, 41(4), 241-251.

Sato, T., Norisuye, T., & Fujita, H. (1984a). Double-Stranded Helix of Xanthan - Dimensional and Hydrodynamic Properties in 0.1-M Aqueous Sodium-Chloride. Macromolecules, 17(12), 2696-2700.

Sato, T., Norisuye, T., & Fujita, H. (1984b). Double-Stranded Helix of Xanthan in Dilute-Solution- Evidence from Light-Scattering. Polymer Journal, 16(4), 341-350.

Savi, R., de Freitas, R. A., Sassaki, G. L., Koop, H. S., & Silveira, J. L. M. (2015). Real-time monitoring of the change in stiffness of single-strand xanthan gum induced by NaCl. Food Hydrocolloids, 44, 191-197.

Shimizu, N., Mori, T., Igarashi, N., Ohta, H., Nagatani, Y., Kosuge, T., & Ito, K. (2013). Refurbishing of Small-Angle X-ray Scattering Beamline, BL-6A at the Photon Factory. J. Phys.: Conf. Ser., 425(20), 202008.

Shimizu, N., Yatabe, K., Nagatani, Y., Saijyo, S., Kosuge, T., & Igarashi, N. (2016). Software development for analysis of small-angle X-ray scattering data. AIP Conf. Proc., 1741(1), 050017.

Stokke, B. T., Elgsaeter, A., & Smidsrod, O. (1986). Electron microscopic study of single-and double-stranded xanthan. International Journal of Biological Macromolecules, 8(4), 217- 225.

Stokke, B. T., Smidsrød, O., & Elgsaeter, A. (1989). Electron microscopy of native xanthan and xanthan exposed to low ionic strength. Biopolymers, 28(2), 617-637.

Teckentrup, J., Al-Hammood, O., Steffens, T., Bednarz, H., Walhorn, V., Niehaus, K., & Anselmetti, D. (2017). Comparative analysis of different xanthan samples by atomic force microscopy. Journal of Biotechnology, 257, 2-8.

Tomofuji, Y., Yoshiba, K., Christensen, B. E., & Terao, K. (2019). Single-chain conformation of carboxylated schizophyllan, a triple helical polysaccharide, in dilute alkaline aqueous solution. Polymer, 185, 121944.

Yamakawa, H., & Yoshizaki, T. (2016). Helical Wormlike Chains in Polymer Solutions. Berlin, Germany: Springer.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る