リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Lectin histochemistry of posterior lingual glands of developing rats」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Lectin histochemistry of posterior lingual glands of developing rats

Harada, Kazuma 大阪大学

2023.06.26

概要

Title

Lectin histochemistry of posterior lingual
glands of developing rats

Author(s)

Harada, Kazuma; Miki, Koji; Tanaka, Susumu et
al.

Citation

Scientific Reports. 2023, 13, p. 10365

Version Type VoR
URL
rights

https://hdl.handle.net/11094/92554
This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

www.nature.com/scientificreports

OPEN

Lectin histochemistry of posterior
lingual glands of developing rats
Kazuma Harada 1*, Koji Miki 2, Susumu Tanaka 1, Mikihiko Kogo 1 & Satoshi Wakisaka 3
The posterior lingual glands are classified as Weber and von Ebner glands. Glycans play an important
role in salivary glands. Although the distribution of glycans can explain functional diversity and
variation, there are many unknowns in the developing rat posterior lingual glands. The purpose of
this study was to elucidate the relationship between the development and function of the posterior
lingual gland in rats by histochemical analysis using lectins that bind to sugar residues. In adult rats,
Arachis hypogaea (PNA), Glycine maximus (SBA), and Triticum vulgaris (WGA) were associated with
serous cells and Dolichos biflorus (DBA) with mucous cells. In both Weber’s and von Ebner’s glands,
all 4 lectins were bound to serous cells in early development, but as development progressed, DBA
disappeared in serous cells and only the DBA remained in mucous cells. These results suggest that Galβ
(1,3) > Galβ(1,4) > Gal, αGalNAc > αGal > βGalNAc, NeuAc > (GalNAc)2–3>>>GlcNAc, and GalNAcα(1,3)
are present in the early stage of development, but that GalNAcα(1,3) disappear in serous cells and only
GalNAcα(1,3) are localized in mucous cells after maturation. These results indicate that Weber glands
function as serous glands in the early postnatal stage when von Ebner glands have not matured.
The oral cavity is part of the digestive system whose main function is to aid food intake. The salivary glands
produce and secrete saliva, which keeps the oral cavity moist. Lingual gland’s saliva is an important growth
factor for taste receptor c­ ells1. The tongue has two minor salivary glands, the anterior lingual and post l­ ingual2.
The anterior lingual gland, Blandin-Nühn’s gland, is a mixed gland located on the inferior surface of the tongue
­apex2,3. In humans, Weber’s glands open onto the tonsils of the t­ ongue2,4,5, whereas in rats, Weber’s glands open
onto the dorsal epithelium at the back of the tongue, and are involved in food mass formation and ­swallowing2,5.
Weber’s glands are muciparous; however, the presence of serous cells has been suggested in humans and r­ ats2,6.
The von Ebner’s glands, which open at the base of the sulcus of the circumvallate papilla and papillae foliate, are
­serous2,7,8 and secrete saliva and wash out the taste pits of taste buds in the papillary sulcus epithelium, thereby
renewing and maintaining taste receptor f­ unction6,9–12. They also produce tongue lipase, which hydrolyzes triacylglycerols in the acidic gastric lumen and aids the first step in dietary fat ­digestion2,13. In rats, the development
of the minor salivary glands occurs in the late embryonic p
­ eriod5, whereas the development of major salivary
glands begins in the parotid gland on embryonic day 1­ 45,14,15, in the submandibular gland on embryonic day
­1316, and in the sublingual gland approximately on embryonic day ­1817.
The posterior lingual glands are believed to be involved in the renewal of taste receptors through salivation
and washing of the taste pits of the taste buds with saliva. Lectins are often used as markers for epithelial and
mesenchymal cells to identify specific cell populations because of their ability to bind specifically to glycohydrate
epitopes on the cell membrane. By searching for the binding mode of lectins, the localization of glycoconjugates
in different tissues and the characteristics of cellular glycans in each tissue can be elucidated. Lectin histochemical studies have been reported on the distribution of lectins in various species. In summary, the previous reports
indicate that serous cells of salivary glands show binding to Ulex europeus agglutinin-I (UEAI), Soybean Glycine
maximus agglutinin (SBA), Peanut (Arachis hypogaea) agglutinin (PNA) and Wheat germ (Triticum vulgaris)
agglutinin (WGA), while mucous cells tend to show binding to Ricinus communis agglutinin (RCA) and Horse
gram (Dolichos biflorus) agglutinin (DBA)18–31. From the 21 lectins used in our laboratory and potentially binding to salivary glands, we found that SBA, PNA, and WGA bind to serous cells and DBA binds to mucous cells
in adult rats.
However, although the localization and site differences of these lectin-binding patterns have been clarified, the development of the rat posterior lingual glands and changes in lectin-binding patterns have not been
clarified. In this study, we examined the development of the rat posterior lingual glands and lectin-binding
patterns using SBA, PNA, WGA, and DBA as indices, with the aim of clarifying the relationship between the
1

The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University,
Suita, Japan. 2Department of Periodonology, Graduate School of Dentistry, Osaka University, Suita,
Japan. 3Department of Anatomy and Cell Biology, Graduate School of Dentistry, Osaka University, Suita,
Japan. *email: harada.kazuma.dent@osaka-u.ac.jp
Scientific Reports |

(2023) 13:10365

| https://doi.org/10.1038/s41598-023-36154-9

1
Vol.:(0123456789)

www.nature.com/scientificreports/
development of the posterior lingual gland and the renewal of taste reception among its functions. The following
results were obtained. Weber’s glands and von Ebner glands were fully developed by postnatal day 21. Mucous
cells of the Weber’s glands were shown to bind DBA in adult rats, and SBA, WGA, PNA and DBA in the early
developmental stage. Serous cells of von Ebner’s glands were shown to bind SBA, WGA, and PNA in adult rats,
and DBA bound to the cellular membrane during early development but disappeared during development.
Matured taste buds were found on the circumvallate papilla on postnatal day 1. The present findings indicate that
the maturation of posterior lingual glands is closely associated with changes in food habit, and that the Weber’s
gland functions as a serous gland in the early postnatal stage, while the von Ebner’s gland is not yet mature. The
lectin-binding properties suggest the presence of Galβ (1,3) > Galβ(1,4) > Gal, αGalNAc > αGal > βGalNAc, and
NeuAc > (GalNAc)2–3>>>GlcNAc sugar residues in serous cells and GalNAcα(1,3) sugar residues in mucous cells
(Table 1). The results obtained provide data for the functional characterization of the rat posterior lingual gland.

Results

Hematoxylin and Eosin (H&E) staining.  In adult rats, von Ebner’s glands were found to be located

just below the circumvallate papilla, separated on both sides by the lingual septum, clumped within the muscularis, and with the opening at the base of the circumvallate papilla sulcus (Fig. 1a). The Weber’s glands were
located laterally and posteriorly to the von Ebner’s glands, opening directly onto the dorsal surface of the tongue
(Fig. 1a). On embryonic day 18, the sulcus epithelium of the circumvallate papilla had not yet been inserted
into the mesenchyme. Serial sections showed clusters of epithelial cells in the lateral portion of the posterior
tongue (Fig. 1b) which were continuous with the surface layer of the tongue epithelium. On embryonic day 20,
we observed an infiltration of the sulcus epithelium of the circumvallate papilla into the mesenchyme, with no
evident formation of the von Ebner’s glands. The Weber’s glands were also found in the mesenchyme in high
number (Fig. 1c) with numerous clusters of epithelial cells present in the mesenchyme at 1 day of age (Fig. 1d),
and their number and size increased further at 3 days of age (Fig. 1e). Thereafter, the cell population of epithelial

Abbreviation

Lectin

Oligosaccharide specificity

PNA

Peanut (Arachis hypogaea) agglutinin

Galβ (1,3) > Galβ(1,4) > Gal

SBA

Soybean (Glycine maximus) agglutinin

αGalNAc > αGal > βGalNAc

WGA​

Wheat germ (Triticum vulgaris) agglutinin

NeuAc > (GalNAc)2–3>>>GlcNAc

DBA

Horse gram (Dolichos biflorus) agglutinin

GalNAcα(1,3)

Table 1.  Four lectins used in this study and their binding Specificity. The four lectins used in this study
for serous and mucus cells, their origins, abbreviations, and binding specificities are listed in table.
Decreased specificity is represented by one or more greater symbols. Abbreviations: Gal, galactose; GalNAc,
N-acetylgalactosamine; NeuAc, sialic acid; GlcNAc, N-acetylglucosamine.

Figure 1.  Hematoxylin and Eosin staining of a rat lingual frontal section containing a circumvallate papilla.
Cross-sections of the rat tongue including the circumvallate papilla at postnatal day 56 (a), embryonic day 18
(b), embryonic day 20 (c), postnatal day 1 (d), postnatal day 3 (e), and postnatal day 28 (f). Scale is 200 µm. E:
embryonic, P: postnatal.

Scientific Reports |
Vol:.(1234567890)

(2023) 13:10365 |

https://doi.org/10.1038/s41598-023-36154-9

2

www.nature.com/scientificreports/
cells in the mesenchyme increased over time, and both the Weber’s and von Ebner’s glands were fully developed
by 28 days of age (Fig. 1f).
The clusters of epithelial cells observed at 18 days of age were formed by cells with darker cytoplasm (Fig. 2a).
On embryonic day 20, the number of cells forming these cell masses increased, and the cytoplasm of these cells
were similarly dark (Fig. 2b). No apparent formation of terminal cells of the serous glands at the tip of the sulcus
epithelium of the circumvallate papilla, which were plunging into the mesenchyme on embryonic day 18 was
observed (Fig. 2c). ...

この論文で使われている画像

参考文献

1. Morris-Wiman, J., Sego, R., Brinkley, L. & Dolce, C. The effects of sialoadenectomy and exogenous EGF on taste bud morphology

and maintenance. Chem. Senses. 25(9–19), 2000. https://​doi.​org/​10.​1093/​chemse/​25.1.9 (2000).

2. Tandler, B., Pinkstaff, C. A. & Riva, A. Ultrastructure and histochemistry of human anterior lingual salivary glands (glands of

Blandin and Nuhn). Anat. Rec. 240, 167–177. https://​doi.​org/​10.​1002/​ar.​10924​00204 (1994).

3. Hamosh, M. & Burns, W. A. Lipolytic activity of human lingual glands (Ebner). Lab Invest. 37, 603–608 (1977).

4. Riva, F. T., Cossu, M., Lantini, M. S. & Riva, A. Fine structure of human deep posterior lingual glands. J. Anat. 142, 103–115 (1985).

5. Hamosh, M. & Hand, A. R. Development of secretory activity in serous cells of the rat tongue. Cytological differentiation and

accumulation of lingual lipase. Dev. Biol. 65, 100–113. https://​doi.​org/​10.​1016/​0012-​1606(78)​90183-5 (1978).

6. Nagato, T., Ren, X. Z., Toh, H. & Tandler, B. Ultrastructure of Weber’s salivary glands of the root of the tongue in the rat. Anat.

Rec. 249, 435–440. https://​doi.​org/​10.​1002/​(SICI)​1097-​0185(199712)​249:4%​3c435::​AID-​AR2%​3e3.0.​CO;2-Q (1999).

7. Ellis, R. A. Circulatory patterns in the papillae of mammalian tongue. Anat. Rec. 133, 579–591. https://​doi.​org/​10.​1002/​ar.​10913​

30310 (1959).

8. Hand, A.R. Salivary glands in Orban’s Oral Histology and Embryology (9th ed. Bhaskar, S. N.) 336–370 (Mosby, Saint Louis, 1980).

9. Field, R. B., Dromy, R. & Hand, A. R. Regulation of secretion of enzymes from von Ebner’s gland of rat tongue. J. Dent. Res. 66,

586–587. https://​doi.​org/​10.​1177/​00220​34587​06600​23501 (1987).

10. Tandler, B. & Riva, A. Salivary glands. In Human Oral Embryology and Histology, 243–284 (1986).

11. Proctor, G. B. The physiology of salivary secretion. Periodontol 2000(70), 11–25. https://​doi.​org/​10.​1111/​prd.​12116 (2016).

12. Hand, A. R. The fine structure of von Ebner’s gland of the rat. J. Cell Biol. 44, 340–353. https://​doi.​org/​10.​1083/​jcb.​44.2.​340 (1970).

13. Hamosh, M. & Scow, R. O. Lingual lipase and its role in the digestion of dietary lipid. J. Clin. Invest. 52, 88–95. https://​doi.​org/​10.​

1172/​JCI10​7177 (1973).

14. Redman, R. S. & Sreebny, L. M. Proliferative behavior of differentiating cells in the developing rat parotid gland. J. Cell Biol. 46,

81–87. https://​doi.​org/​10.​1083/​jcb.​46.1.​81 (1970).

15. Redman, R. S. & Sreebny, L. M. Morphologic and biochemical observations on the development of the rat parotid gland. Dev. Biol.

25, 248–279. https://​doi.​org/​10.​1016/​0012-​1606(71)​90030-3 (1971).

16. Quirós-Terrón, L. et al. Initial stages of development of the submandibular gland (human embryos at 5.5–8 weeks of development).

J. Anat. 234, 700–708. https://​doi.​org/​10.​1111/​joa.​12955 (2019).

17. Wolff, M. S., Mirels, L., Lagner, J. & Hand, A. R. Development of the rat sublingual gland: A light and electron microscopic immunocytochemical study. Anat. Rec 266, 30–42. https://​doi.​org/​10.​1002/​ar.​10027 (2002).

Scientific Reports |

(2023) 13:10365 |

https://doi.org/10.1038/s41598-023-36154-9

Vol.:(0123456789)

www.nature.com/scientificreports/

18. Schulte, B. A. & Spicer, S. S. Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas

with lectin-horseradish peroxidase conjugates. II. Rat. Histochem. J. 16, 3–20. https://​doi.​org/​10.​1007/​BF010​03432 (1984).

19. Nakagawa, F., Schulte, B. A. & Spicer, S. S. Glycoconjugate localization with lectin and PA-TCH-SP cytochemistry in rat hypophysis.

Am. J. Anat. 174, 61–81. https://​doi.​org/​10.​1002/​aja.​10017​40106 (1985).

20. Witt, M. & Miller, I. J. Comparative lectin histochemistry on taste buds in foliate, circumvallate and fungiform papillae of the

rabbit tongue. Histochemistry 98, 173–182. https://​doi.​org/​10.​1007/​BF003​15876 (1992).

21. Ohmura, S., Horimoto, S. & Fujita, K. Lectin cytochemistry of the dark granules in the type 1 cells of Syrian hamster circumvallate

taste buds. Arch. Oral. Biol. 34, 161–166. https://​doi.​org/​10.​1016/​0003-​9969(89)​90003-4 (1989).

22. Roth, J. Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet

cells: Implications for the topology of O-glycosylation. J. Cell Biol. 98, 399–406. https://​doi.​org/​10.​1083/​jcb.​98.2.​399 (1984).

23. Witt, M. & Klessen, C. Lectin histochemical demonstration of galactose- and N-acetyl-D-galactosamine residues in cells of the

rat anterior pituitary. Histochemistry 87, 139–144. https://​doi.​org/​10.​1007/​BF005​33398 (1987).

24. Witt, M. & Reutter, K. Lectin histochemistry on mucous substances of the taste buds and adjacent epithelia of different vertebrates.

Histochemistry 88, 453–461. https://​doi.​org/​10.​1007/​BF005​70308 (1988).

25. Damjanov, I. Lectin cytochemistry and histochemistry. Lab. Invest. 57, 5–20 (1987).

26. Zhang, X. S., Proctor, G. B., Garrett, J. R., Schulte, B. A. & Shori, D. K. Use of lectin probes on tissues and sympathetic saliva to

study the glycoproteins secreted by rat submandibular glands. J. Histochem. Cytochem. 42, 1261–1269. https://​doi.​org/​10.​1177/​

42.9.​80641​33 (1994).

27. Brooks, S. A., Leathem, A. J. C. & Schumacher, U. Lectin Histochemistry (BIOS Scientific Publishers, 1997).

28. Menghi, G., Accili, D. & Bondi, A. M. Differential binding sites of peroxidase-labelled lectins in the submandibular gland of sucking and adult cats. Acta Histochem. 82, 63–75. https://​doi.​org/​10.​1016/​s0065-​1281(87)​80090-9 (1987).

29. Sozmen, M., Brown, P. & Eveson, J. Lectin histochemistry of dog major and minor salivary glands. Vet. Res. 30, 583–593 (1999).

30. Triantafyllou, A., Fletcher, D. & Scott, J. Glycosylations in demilunar and central acinar cells of the submandibular salivary gland

of ferret investigated by lectin histochemistry. Arch. Oral Biol. 49, 697–703. https://​doi.​org/​10.​1016/j.​archo​ralbio.​2004.​04.​005

(2004).

31. Adi, M. M., Chisholm, D. M. & Waterhouse, J. P. Histochemical study of lectin binding in the human fetal minor salivary glands.

J. Oral Pathol. Med. 24, 130–150. https://​doi.​org/​10.​1111/j.​1600-​0714.​1995.​tb011​53.x (1995).

32. Iwasaki, S., Okumura, Y. & Kumakura, M. Ultrastructural study of the relationship between the morphogenesis of filiform papillae

and the keratinization of the lingual epithelium in the mouse. Cells Tissues Organs 165, 91–103. https://​doi.​org/​10.​1159/​00001​

6679 (1999).

33. Uchida, N., Kanazawa, M., Suzuki, Y. & Takeda, M. Expression of BDNF and TrkB in mouse taste buds after denervation and in

circumvallate papillae during development. Arch. Histol. Cytol. 66, 17–25. https://​doi.​org/​10.​1679/​aohc.​66.​17 (2003).

34. Weber, E.H. Beobachtungen über die structur einiger conglomerirten und einfachen drusen und ihre erste entwickelung. Arch

Anat. Physiol. 274–293 (1827).

35. Zimmermann, K. W. Die speicheldrüsen der mundhöhle und die bauchseicheldrüsen. In Handbuch der mikroskopischen anatomie

des menschen. V, Part 1 (ed. von Mollendrff, W.) (Springer, 1978).

36. Azzali, G., Bucci, G., Gatti, R., Orlandini, G. & Ferrari, G. Fine structure of the excretory system of the deep posterior (Ebner’s)

salivary glands of the human tongue. Acta Anat. 136, 257–268. https://​doi.​org/​10.​1159/​00014​6835 (1989).

37. Shinzato, K., Takahashi, S., Wakita, M. & Morita, M. Prenatal development of the palatine gland of rats. Tissue Cell. 36, 115–120.

https://​doi.​org/​10.​1016/j.​tice.​2003.​10.​005 (2004).

38. Pedini, V., Ceccarelli, P. & Gargiulo, A. M. Glycoconjugates in the mandibular salivary gland of adult dogs revealed by lectin

histochemistry. Res. Vet. Sci. 57, 353–357. https://​doi.​org/​10.​1016/​0034-​5288(94)​90130-9 (1994).

39. Menghi, G., Accili, D., Bondi, A. M. & Gabrielli, M. G. Enzymatic degradation and quantitative lectin labeling for characterizing

glycoconjugates which act as lectin acceptors in cat submandibular gland. Histochemistry 90, 331–338. https://​doi.​org/​10.​1007/​

BF005​08309 (1989).

40. Toma, V., Zuber, C., Winter, H. C., Goldstein, I. J. & Roth, J. Application of a lectin from the mushroom Polysporus squamosus for

the histochemical detection of the NeuAcalpha2,6Galbeta1,4Glc/GlcNAc sequence of N-linked oligosaccharides: a comparison

with the Sambucus nigra lectin. Histochem. Cell Biol. 116, 183–193. https://​doi.​org/​10.​1007/​s0041​80100​304 (2001).

41. Takai, Y., Noda, Y., Sumitomo, S., Sagara, S. & Mori, M. Different bindings to lectin in human submandibular gland after enzymatic

digestion. Acta. Histochem. 78, 111–121. https://​doi.​org/​10.​1016/​s0065-​1281(86)​80041-1 (1986).

42. Habata, I., Yasui, T. & Tsukise, A. Histochemistry of Sialoglycoconjugates in Goat Submandibular Glands. Anat. Histol. Embryol.

https://​doi.​org/​10.​1111/j.​1439-​0264.​2010.​01057.x (2010).

43. Fernández, P. E. et al. Intermediate filament proteins expression and carbohydrate moieties in trophoblast and decidual cells of

mature cat placenta. Reprod. Domest. Anim. 49, 263–269. https://​doi.​org/​10.​1111/​rda.​12265 (2014).

44. Ana, C. M., Francisco, A., María, C. D. A., Claudio, G. B. & Elena, J. G. Glycan expression as a tool for a deeper understanding of

a reproductive gland in a skate of economic importance. J. Fish. Biol. https://​doi.​org/​10.​1111/​jfb.​14597 (2020).

45. Harada, S., Yamaguchi, K., Kanemaru, N. & Kasahara, Y. Maturation of taste buds on the soft palate of the postnatal rat. Physiol.

Behav. 68, 333–339. https://​doi.​org/​10.​1016/​s0031-​9384(99)​00184-5 (2000).

46. Harada, S., Kanemaru, N. & Kasahara, Y. Change in distribution of taste buds in aging rats. Dent. Jpn. 39, 37–39 (2003).

47. Gurkan, S. & Bradley, R. M. Secretions of von Ebner’s glands influence responses from taste buds in rat circumvallate papilla.

Chem. Senses. 13, 655–661. https://​doi.​org/​10.​1093/​chemse/​13.4.​655 (1988).

48. Ohsawa, I., Yoshida, M., Ishikawa, S. & Gotoh, M. A study about the relation between human taste and saliva. 22nd Japanese

Symposium on taste and smell (JASTS XXII, abstr.). Chem. Senses. 14, 303–326 (1988).

49. Taniguchi, R. et al. Localization of Ulex europaeus agglutinin-I(UEA-I) in the developing gustatory epithelium of the rat. Arch.

Histol. Cytol. 67, 187–193 (2004).

50. Taniguchi, R. et al. Jacalin and peanut agglutinin(PNA) binding in the taste bud cells of the rat: New reliable markers for type IV

cells of the rat taste buds. Arch. Histol. Cytol. 68, 243–250 (2005).

51. Ichimori, Y., Ueda, K., Okada, H., Honma, S. & Wakisaka, S. Histochemical changes and apoptosis in degenerating taste buds of

the rat circumvallate papilla. Arch. Histol. Cytol. 72, 91–100 (2009).

Acknowledgements

We would like to thank Editage (www.​edita​ge.​com) for English language editing.

Author contributions

K.H. and S.W. contributed to conception, design, data acquisition, analysis, and interpretation, drafted the

manuscript; K.M., S.T. contributed to the data interpretation, critically revised the manuscript; M.K. designed

and supervised the study and critically revised the manuscript; All authors gave final approval and agree to be

accountable for all aspects of the work.

Scientific Reports |

Vol:.(1234567890)

(2023) 13:10365 |

https://doi.org/10.1038/s41598-023-36154-9

10

www.nature.com/scientificreports/

Funding

This work was supported in part by Grants-in-Aid from the Japan Society for the Promotion of Science (Nos.

20K09878, 19390464).

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to K.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

(2023) 13:10365 |

https://doi.org/10.1038/s41598-023-36154-9

11

Vol.:(0123456789)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る