リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dermal fibroblast-like cells reprogrammed directly from adipocytes in mouse (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dermal fibroblast-like cells reprogrammed directly from adipocytes in mouse (本文)

豊﨑, 光信 慶應義塾大学

2021.03.23

概要

In deep burns, early wound closure is important for healing, and skin grafting is mainly used for wound closure. However, it is difficult to achieve early wound closure in extensive total body surface area deep burns due to the lack of donor sites. Dermal fibroblasts, responsible for dermis formation, may be lost in deep burns. However, fat layers composed of adipocytes, lying underneath the dermis, are retained even in such cases. Direct reprogramming is a novel method for directly reprograming some cells into other types by introducing specific master regulators; it has exhibited appreciable success in various fields. In this study, we aimed to assess whether the transfection of master regulators (ELF4, FOXC2, FOXO1, IRF1, PRRX1, and ZEB1) could reprogram mouse adipocytes into dermal fibroblast‑ like cells. Our results indicated the shrinkage of fat droplets in reprogrammed mouse adipocytes and their transformation into spindle‑shaped dermal fibroblasts. Reduced expression of PPAR‑2, c/EBP, aP2, and leptin, the known markers of adipocytes, in RT‑PCR, and enhanced expression of anti‑ER‑TR7, the known anti‑fibroblast marker, in immunocytochemistry, were confirmed in the reprogrammed mouse adipocytes. The dermal fibroblast‑like cells, reported here, may open up a new treatment mode for enabling early closure of deep burn wounds.

この論文で使われている画像

参考文献

1. Xiao-Wu, W., Herndon, D. N., Spies, M., Sanford, A. P. & Wolf, S. E. Effects of delayed wound excision and grafting in severely burned children. Arch. Surg. 137, 1049–1054 (2002).

2. Kennedy, P., Brammah, S. & Wills, E. Burns, biofilm and a new appraisal of burn wound sepsis. Burns 36, 49–56 (2010).

3. Singer, A. J. et al. Early versus delayed excision and grafting of full-thickness burns in a porcine model: A randomized study. Plast. Reconstr. Surg. 137, 972e–979e (2016).

4. Omar, M. T. & Hassan, A. A. Evaluation of hand function after early excision and skin grafting of burns versus delayed skin graft- ing: A randomized clinical trial. Burns 37, 707–713 (2011).

5. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

6. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390–393 (2011).

7. Miura, S. & Suzuki, A. Generation of mouse and human organoid-forming intestinal progenitor cells by direct lineage reprogram- ming. Cell Stem Cell 21, 456-471.e455 (2017).

8. Matsuda, T. et al. Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conver- sion. Neuron 101, 472-485.e477 (2019).

9. Iwuagwu, F. C., Wilson, D. & Bailie, F. The use of skin grafts in postburn contracture release: A 10-year review. Plast. Reconstr. Surg. 103, 1198–1204 (1999).

10. Yeong, E. K., Chen, S. H. & Tang, Y. B. The treatment of bone exposure in burns by using artificial dermis. Ann. Plast. Surg. 69, 607–610 (2012).

11. Widjaja, W., Tan, J. & Maitz, P. K. M. Efficacy of dermal substitute on deep dermal to full thickness burn injury: A systematic review. ANZ J. Surg. 87, 446–452 (2017).

12. Wasiak, J., Cleland, H., Campbell, F. & Spinks, A. Dressings for superficial and partial thickness burns. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD002106.pub4 (2013).

13. Shahrokhi, S., Arno, A. & Jeschke, M. G. The use of dermal substitutes in burn surgery: Acute phase. Wound Repair Regen. 22, 14–22 (2014).

14. Pham, C., Greenwood, J., Cleland, H., Woodruff, P. & Maddern, G. Bioengineered skin substitutes for the management of burns: A systematic review. Burns 33, 946–957 (2007).

15. Ottomann, C. et al. Prospective randomized trial of accelerated re-epithelization of skin graft donor sites using extracorporeal shock wave therapy. J. Am. Coll. Surg. 211, 361–367 (2010).

16. Gravante, G. et al. A randomized trial comparing ReCell system of epidermal cells delivery versus classic skin grafts for the treat- ment of deep partial thickness burns. Burns 33, 966–972 (2007).

17. Wolins, N. E. et al. S3–12, Adipophilin, and TIP47 package lipid in adipocytes. J. Biol. Chem. 280, 19146–19155 (2005).

18. Wolins, N. E. et al. OP9 mouse stromal cells rapidly differentiate into adipocytes: Characterization of a useful new model of adi- pogenesis. J. Lipid Res. 47, 450–460 (2006).

19. Inagawa, K. et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ. Res. 111, 1147–1156 (2012).

20. Yan, H. et al. Nitric oxide promotes differentiation of rat white preadipocytes in culture. J. Lipid Res. 43, 2123–2129 (2002).

参考文献をもっと見る