リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Topological Identification of Vortical Flow Structures in the Left Ventricle of the Heart」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Topological Identification of Vortical Flow Structures in the Left Ventricle of the Heart

Sakajo, Takashi Itatani, Keiichi 京都大学 DOI:10.1137/22M1536923

2023.09

概要

Vortical blood flow structures inside the heart’s left ventricle (LV) play a crucial role in an efficient blood supply from the heart to organs. Recent medical imaging and computational technology progress have brought us blood flow visualization tools in echocardiography and cardiac MRI. However, there are still few tools to precisely capture the vortical flow structures since the flow is highly unsteady and turbulent. Because of the importance of vortex flow power force on the prognosis of cardiac functions in heart diseases, identifying the vortex flow structure without ambiguity is essential in medical science. In this paper, we propose a mathematical method to describe the topological features of two-dimensional (2D) flows with symbolic graph expressions, called COT representations. Since the heart contracts and relaxes repeatedly in a short time range, the instantaneous blood flow pattern along this moving boundary would appear as a source/sink structure. This means that the flow does not satisfy the slip-boundary condition that is assumed in the preceding topological classification theory for 2D flows [T. Sakajo and T. Yokoyama, IMA J. Appl. Math., 83 (2018), pp. 380–411], [T. Sakajo and Y. Yokoyama, Discrete Math. Algorithms Appl., 15 (2023), 2250143]. We thus establish a new topological classification theory and an algorithm suitable for blood flow with the moving boundary condition by introducing a degenerate singular point named nn-bundled ss-saddle. Applying the theory to 2D blood flow patterns obtained by the visualization tools, we successfully identify vortical flow structures as topological vortex structures. This realizes a new image processing characterizing healthy blood flow patterns as well as inefficient patterns in diseased hearts.

参考文献

[1] K. Akiyama, N. Nakamura, K. Itatani, Y. Naito, M. Kinoshita, M. S. S. Hamaoka, H. Kato,

H. Yasumoto, Y. Nakajima, T. Mizobe, S. Numata, H. Yaku, and T. Sawa, Flow-dynamics

assessment of mitral-valve surgery by intraoperative vector flow mapping, Int. Cardiovasc. Thorac.

Surg., 6 (2017), pp. 869--875.

[2] H. Aref and M. Br{\e}ns, On stagnation points and streamline topology in vortex flows, J. Fluid Mech.,

370 (1998), pp. 1--27.

[3] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification, CRC Press, Boca Raton, FL, 2005.

[4] J. S. Cho, S. Shrestha, N. Kagiyama, L. Hu, Y. A. Ghaffar, G. Casaclang-Verzosa, I. Zeb,

and P. P. Sengupta, A network-based ``phenomics"" approach for discovering patient subtypes from

high-throughput cardiac imaging data, JACC Cardiovasc. Imaging, 8 (2020), pp. 1955--1670.

[5] G. Gutierrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dyn.

Syst., 6 (1986), pp. 17--44.

[6] K. Itatani, When the blood flow becomes bright, Euro. Heart J., 35 (2014), pp. 747--752a.

[7] K. Itatani, Advances in Hemodynamic Research, Nova Science Publisher, Hauppauge, NY, 2015.

[8] K. Itatani, T. Okada, T. Uejima, T. Tanaka, M. Ono, K. Miyaji, and K. Takenaka, Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity

and wall shear stress, Jpn. J. Appl. Phys., 52 (2013), 07HF16.

© 2023 \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M}. \mathrm{P}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{s} 4.0 \mathrm{l}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}

Downloaded 08/20/23 to 130.54.130.251 . Redistribution subject to CCBY license

TOPOLOGICAL IDENTIFICATION OF VORTICES IN HEART

1519

[9] R. Kakizaki, T. Nabeta, S. Ishii, T. Koitabashi, K. Itatani, T. Inomata, and J. Ako, Cardiac

resynchronization therapy reduces left ventricular energy loss, Int. J. Cardiol., 221 (2016), pp. 546-548.

[10] A. Kheradvar, M. Milano, and M. Gharib, Correlation between vortex ring formation and mitral

annulus dynamics during ventricular rapid filling, ASAIO J., 53 (2007), pp. 8--16.

[11] R. Kidambi and P. K. Newton, Streamline topologies for integrable vortex motion on a sphere, Phys.

D, 140 (2000), pp. 95--125.

[12] T. Ma and S. Wang, A generalized poincar\'e--hopf index formula and its applications to 2-d incompressible

flows, Nonlinear Anal. Real World Appl., 2 (2001), pp. 467--482.

[13] T. Ma and S. Wang, Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics,

Math. Surveys Monogr. 119, AMS, Providence, RI, 2005.

[14] A. Maier, Trajectories on the closed orientable surfaces, Rec Math. [Mat. Sbornik] N.S. (Russian, with

English summary), 12 (1943), pp. 71--84.

[15] K. Moffatt, The topology of scalar fields in 2d and 3d turbulence, in Proceedings of IUTAM Symposium

Geometry and Statistics of Turbulence (Hayama), Fluid Mech. Appl. 59, T. K., et al., eds., Kluwer

Academic Publishers, Dordrecht, 2001, pp. 13--22.

[16] T. Nabeta, K. Itatani, K. Miyaji, and J. Ako, Vortex flow energy loss reflects therapeutic effect in

dilated cardiomyopathy, Eur. Heart J., 36 (2015), p. 637.

[17] K. Nakaji, K. Itatani, N. Tamaki, H. Morichi, N. Nakanishi, M. Takigami, M. Yamagishi,

H. Yaku, and K. Yamada, Assessment of biventricular hemodynamics and energy dynamics using

lumen-tracking 4d flow mri without contrast medium, J. Cardiol., 78 (2021), pp. 79--87.

[18] I. Nikolaev, Foliations on Surfaces, A Series of Modern Surgeys in Mathematics 41, Springer-Verlag,

Berlin, Heidelberg, 2001.

[19] T. Sakajo, S. Ohishi, and T. Uda, Identification of kuroshio meanderings south of japan via a topological

data analysis for sea surface height, J. Oceanography, (2022).

[20] T. Sakajo, Y. Sawamura, and T. Yokoyama, Unique encoding for streamline topologies of incompressible and inviscid flows in multiply connected domains, Fluid Dyn. Res., 46 (2014), p. 031411.

[21] T. Sakajo and T. Yokoyama, Tree representation of topological streamline patterns of structurally

stable 2d hamiltonian vector fields in multiply connected domains, IMA J. Appl. Math., 83 (2018),

pp. 380--411.

[22] T. Sakajo and Y. Yokoyama, Discrete representations of orbit structures of flows for topological data

analysis discrete representations of orbit structures of flows for topological data analysis, Discrete

Math. Algorithms Appl., 15 (2023), 2250143, https://doi.org/10.1142/S1793830922501439.

[23] T. Uda, T. Sakajo, M. Inastu, and K. Koga, Morphological identification of atmospheric blockings

via topological flow data analysis, J. Meteo. Soc. Japan, 99 (2021), pp. 1169--1183.

[24] T. Yokoyama, Decompositions of Surface Flows, preprint, https://arxiv.org/abs/1703.05501, 2020.

[25] T. Yokoyama and T. Sakajo, Word representation of streamline topologies for structurally stable vortex

flows in multiply connected domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci, 469 (2013),

20120558.

© 2023 \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M}. \mathrm{P}\mathrm{u}\mathrm{b}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{d} \mathrm{b}\mathrm{y} \mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{C}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{s} 4.0 \mathrm{l}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る