リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gradient Flow Exact Renormalization Group for Scalar Field Theories」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gradient Flow Exact Renormalization Group for Scalar Field Theories

Haruna, Junichi 京都大学 DOI:10.14989/doctor.k24410

2023.03.23

概要

Renormalization group (RG) is a fundamental and powerful framework to study various
properties of physical systems using a coarse-graining procedure, namely, varying the
energy scale. It plays an essential role in modern physics and emphasizes the importance
of the system’s typical energy scale, such as particle mass, correlation length between
particles, or lattice spacing of a lattice system.
In particular, it has established the notion of “hierarchy” in physical theories. This
notion states that even though we do not know the microscopic (ultraviolet, high-energy)
theory, we can construct effective theories on macroscopic (or low-energy) dynamics.
Quantum Field Theories (QFTs) and Classical Field Theories (such as Classical Electromagnetism and General Relativity) are good examples to illustrate this notion. We
know that the former is valid at all scales, while the latter is just a low-energy effective
theory of QFT. However, we can make predictions on the dynamics of macroscopic objects
by Classical Field Theories even before the establishment of QFTs. As is seen from this
example, if we focus on the low-energy behavior of a system, we can make a practical
description with adequate accuracy independently of its microscopic physics. The renormalization group serves as a bridge between effective infrared descriptions and underlying
ultraviolet theories.
In QFTs, a framework called Exact Renormalization Group (ERG) 1 has been developed as a quantitative formulation of the RG method [2–6]. It introduces an ultraviolet
(UV) cutoff to the theory and studies the flow of the Wilsonian effective action SΛ , which
effectively describes the physics at the energy scale Λ. It is helpful to investigate critical
phenomena and phase structures of various systems in relativistic quantum field theories,
statistical physics, and condensed matter physics. Phase structures of strongly coupled
theory have also been investigated via this framework. ERG has also been applied to
formulating quantum gravity, by studying non-trivial UV fixed points and the continuum
limit of gravitational field theories. ...

参考文献

[1] Y. Abe, Y. Hamada, and J. Haruna, Fixed point structure of the gradient flow exact

renormalization group for scalar field theories, PTEP 2022 no. 3, (2022) 033B03

[arXiv:2201.04111 [hep-th]].

[2] K. G. Wilson and J. B. Kogut, The Renormalization group and the epsilon

expansion, Phys. Rept. 12 (1974) 75–199.

[3] F. J. Wegner and A. Houghton, Renormalization group equation for critical

phenomena, Phys. Rev. A 8 (1973) 401–412.

[4] K. G. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys.

55 (1983) 583–600.

[5] J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984)

269–295.

[6] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301

(1993) 90–94 [arXiv:1710.05815 [hep-th]].

[7] H. Sonoda and H. Suzuki, Derivation of a gradient flow from the exact

renormalization group, PTEP 2019 no. 3, (2019) 033B05 [arXiv:1901.05169

[hep-th]].

[8] H. Sonoda and H. Suzuki, Gradient flow exact renormalization group, PTEP 2021

no. 2, (2021) 023B05 [arXiv:2012.03568 [hep-th]].

[9] Y. Miyakawa and H. Suzuki, Gradient flow exact renormalization group – inclusion

of fermion fields, arXiv:2106.11142 [hep-th].

[10] Y. Miyakawa, H. Sonoda, and H. Suzuki, Manifestly gauge invariant exact

renormalization group for quantum electrodynamics, arXiv:2111.15529 [hep-th].

[11] O. J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511

(2012) 177–272 [arXiv:1003.1366 [hep-th]].

[12] H. Suzuki, Online iTHEMS Lecture on Gradient Flow Exact Renormalization

Group,.

73

[13] H. Sonoda, Equivalence of Wilson Actions, PTEP 2015 no. 10, (2015) 103B01

[arXiv:1503.08578 [hep-th]].

[14] J. Berges, N. Tetradis, and C. Wetterich, Nonperturbative renormalization flow in

quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223–386

[arXiv:hep-ph/0005122].

[15] J. Polonyi, Lectures on the functional renormalization group method, Central Eur.

J. Phys. 1 (2003) 1–71 [arXiv:hep-th/0110026].

[16] J. M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys.

322 (2007) 2831–2915 [arXiv:hep-th/0512261].

[17] H. Gies, Introduction to the functional RG and applications to gauge theories, Lect.

Notes Phys. 852 (2012) 287–348 [arXiv:hep-ph/0611146].

[18] S. R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys.

Rev. 159 (1967) 1251–1256.

[19] A. B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a

2D Field Theory, JETP Lett. 43 (1986) 730–732.

[20] J. L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988)

749–752.

[21] H. Osborn, Derivation of a Four-dimensional c Theorem, Phys. Lett. B 222 (1989)

97–102.

[22] Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four

Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987 [hep-th]].

[23] K. G. Wilson and M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev.

Lett. 28 (1972) 240–243.

[24] H. Makino, O. Morikawa, and H. Suzuki, Gradient flow and the Wilsonian

renormalization group flow, PTEP 2018 no. 5, (2018) 053B02 [arXiv:1802.07897

[hep-th]].

[25] Y. Miyakawa, Axial anomaly in the gradient flow exact renormalization group,

arXiv:2201.08181 [hep-th].

[26] H. Sonoda and H. Suzuki, One-particle irreducible Wilson action in the gradient

flow exact renormalization group formalism, PTEP 2022 no. 5, (2022) 053B01

[arXiv:2201.04448 [hep-th]].

[27] M. Luscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun.

Math. Phys. 293 (2010) 899–919 [arXiv:0907.5491 [hep-lat]].

74

[28] M. L¨

uscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08

(2010) 071 [arXiv:1006.4518 [hep-lat]]. [Erratum: JHEP 03, 092 (2014)].

[29] M. Luscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian

gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963 [hep-th]].

[30] M. Luscher, Chiral symmetry and the Yang–Mills gradient flow, JHEP 04 (2013)

123 [arXiv:1302.5246 [hep-lat]].

[31] M. L¨

uscher, Future applications of the Yang-Mills gradient flow in lattice QCD, PoS

LATTICE2013 (2014) 016 [arXiv:1308.5598 [hep-lat]].

[32] P. H. Ginsparg and K. G. Wilson, A Remnant of Chiral Symmetry on the Lattice,

Phys. Rev. D 25 (1982) 2649.

[33] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969)

2426–2438.

[34] J. S. Bell and R. Jackiw, A PCAC puzzle: π 0 → γγ in the σ model, Nuovo Cim. A

60 (1969) 47–61.

[35] M. Matsumoto, G. Tanaka, and A. Tsuchiya, The renormalization group and the

diffusion equation, PTEP 2021 no. 2, (2021) 023B02 [arXiv:2011.14687 [hep-th]].

[36] H. Makino and H. Suzuki, Renormalizability of the gradient flow in the 2D O(N )

non-linear sigma model, PTEP 2015 no. 3, (2015) 033B08 [arXiv:1410.7538

[hep-lat]].

[37] S. Aoki, K. Kikuchi, and T. Onogi, Gradient Flow of O(N) nonlinear sigma model

at large N, JHEP 04 (2015) 156 [arXiv:1412.8249 [hep-th]].

[38] F. Capponi, A. Rago, L. Del Debbio, S. Ehret, and R. Pellegrini, Renormalisation

of the energy-momentum tensor in scalar field theory using the Wilson flow, PoS

LATTICE2015 (2016) 306 [arXiv:1512.02851 [hep-lat]].

[39] S. Dutta, B. Sathiapalan, and H. Sonoda, Wilson action for the O(N ) model, Nucl.

Phys. B 956 (2020) 115022 [arXiv:2003.02773 [hep-th]].

[40] M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum

Gravity, Living Rev. Rel. 9 (2006) 5–173.

[41] M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012)

055022 [arXiv:1202.2274 [hep-th]].

[42] J. Ambjorn, A. Goerlich, J. Jurkiewicz, and R. Loll, Nonperturbative Quantum

Gravity, Phys. Rept. 519 (2012) 127–210 [arXiv:1203.3591 [hep-th]].

75

[43] R. Percacci, Asymptotic Safety, arXiv:0709.3851 [hep-th].

[44] M. Niedermaier, The Asymptotic safety scenario in quantum gravity: An

Introduction, Class. Quant. Grav. 24 (2007) R171–230 [arXiv:gr-qc/0610018].

76

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る