リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Flavonoid Nobiletin Attenuates Cyclophosphamide-Induced Cystitis in Mice through Mechanisms That Involve Inhibition of IL-1β Induced Connexin 43 Upregulation and Gap Junction Communication in Urothelial Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Flavonoid Nobiletin Attenuates Cyclophosphamide-Induced Cystitis in Mice through Mechanisms That Involve Inhibition of IL-1β Induced Connexin 43 Upregulation and Gap Junction Communication in Urothelial Cells

Kono, Jin 京都大学 DOI:10.14989/doctor.k24493

2023.03.23

概要

Chronic inflammatory bladder diseases, such as interstitial cystitis (IC) and nonbacterial cystitis (e.g., allergic), cause debilitating urinary and pelvic pain symptoms that
significantly impair quality of life. These conditions remain a challenge for health care
providers and scientists, given the inherent difficulties in their diagnosis, the lack of specific
and effective therapies, and their recognized multifactorial nature [1]. Current treatments include behavioral modifications, use of anti-allergic and anti-inflammatory drugs, dimethyl
sulfoxide solution, pain modulators, anticholinergics and drugs that protect the bladder
mucosa, or bladder distension, neuromodulation, and surgical interventions [2–4]. ...

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Di, X.P.; Luo, D.Y.; Jin, X.; Zhao, W.Y.; Li, H.; Wang, K.J. Efficacy and safety comparison of pharmacotherapies for interstitial

cystitis and bladder pain syndrome: A systematic review and Bayesian network meta-analysis. Int. Urogynecol. J. 2021, 32,

1129–1141. [CrossRef] [PubMed]

Yoshimura, N.; Homma, Y.; Tomoe, H.; Otsuka, A.; Kitta, T.; Masumori, N.; Akiyama, Y.; Niimi, A.; Mitsui, T.; Nanri, M.; et al.

Efficacy and safety of intravesical instillation of KRP-116D (50% dimethyl sulfoxide solution) for interstitial cystitis/bladder pain

syndrome in Japanese patients: A multicenter, randomized, double-blind, placebo-controlled, clinical study. Int. J. Urol. 2021, 28,

545–553. [CrossRef] [PubMed]

Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; et al. Clinical

guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2020, 27, 578–589. [CrossRef] [PubMed]

Hanno, P.M.; Erickson, D.; Moldwin, R.; Faraday, M.M. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome:

AUA guideline amendment. J. Urol. 2015, 193, 1545–1553. [CrossRef] [PubMed]

Hillelsohn, J.H.; Rais-Bahrami, S.; Friedlander, J.I.; Okhunov, Z.; Kashan, M.; Rosen, L.; Moldwin, R.M. Fulguration for Hunner

ulcers: Long-term clinical outcomes. J. Urol. 2012, 188, 2238–2241. [CrossRef]

Ryu, J.; Pak, S.; Song, M.; Chun, J.Y.; Hong, S.; Choo, M.S. Elimination of Hunner’s Ulcers by Fulguration in Patients With

Interstitial Cystitis: Is It Effective and Long Lasting? Korean J. Urol. 2013, 54, 767–771. [CrossRef]

Kajiwara, M.; Inoue, S.; Kobayashi, K.; Ohara, S.; Teishima, J.; Matsubara, A. Therapeutic efficacy of narrow band imaging-assisted

transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. Int. J. Urol. 2014, 21 (Suppl. 1),

57–60. [CrossRef]

Chennamsetty, A.; Khourdaji, I.; Goike, J.; Killinger, K.A.; Girdler, B.; Peters, K.M. Electrosurgical management of Hunner ulcers

in a referral center’s interstitial cystitis population. Urology 2015, 85, 74–78. [CrossRef]

Glemain, P.; Rivière, C.; Lenormand, L.; Karam, G.; Bouchot, O.; Buzelin, J.M. Prolonged hydrodistention of the bladder for

symptomatic treatment of interstitial cystitis: Efficacy at 6 months and 1 year. Eur. Urol. 2002, 41, 79–84. [CrossRef]

Int. J. Mol. Sci. 2022, 23, 5037

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

12 of 14

El-Hefnawy, A.S.; Makharita, M.Y.; Abed, A.; Amr, Y.M.; Salah El-Badry, M.; Shaaban, A.A. Anesthetic Bladder Hydrodistention

Is Superior to Superior Hypogastric Plexus Neurolysis in Treatment of Interstitial Cystitis-bladder Pain Syndrome: A Prospective

Randomized Trial. Urology 2015, 85, 1039–1044. [CrossRef]

Niimi, A.; Nomiya, A.; Yamada, Y.; Suzuki, M.; Fujimura, T.; Fukuhara, H.; Kume, H.; Igawa, Y.; Homma, Y. Hydrodistension

with or without fulguration of hunner lesions for interstitial cystitis: Long-term outcomes and prognostic predictors. Neurourol.

Urodyn. 2016, 35, 965–969. [CrossRef] [PubMed]

Hoke, T.P.; Goldstein, H.; Saks, E.K.; Vakili, B. Hydrodistention of the bladder for the treatment of bladder pain syndrome/interstitial cystitis (BPS/IC). Neurourol. Urodyn. 2017, 36, 784–786. [CrossRef] [PubMed]

Kirk, P.S.; Santiago-Lastra, Y.; Qin, Y.; Stoffel, J.T.; Clemens, J.Q.; Cameron, A.P. The effects of cystoscopy and hydrodistention on

symptoms and bladder capacity in interstitial cystitis/bladder pain syndrome. Neurourol. Urodyn. 2018, 37, 2002–2007. [CrossRef]

[PubMed]

Abelleyra Lastoria, D.A.; Raison, N.; Aydin, A.; Khan, S.; Dasgupta, P.; Ahmed, K. Comparing surgical interventions for interstitial

cystitis: A systematic review. Low Urin. Tract. Symptoms 2022. [CrossRef]

Jiang, Y.H.; Jhang, J.F.; Lee, Y.K.; Kuo, H.C. Low-Energy Shock Wave Plus Intravesical Instillation of Botulinum Toxin A for

Interstitial Cystitis/Bladder Pain Syndrome: Pathophysiology and Preliminary Result of a Novel Minimally Invasive Treatment.

Biomedicines 2022, 10, 396. [CrossRef]

Evans, M.; Judy, W.V.; Wilson, D.; Rumberger, J.A.; Guthrie, N. Randomized, double-blind, placebo-controlled, clinical study on

the effect of Diabetinol((R)) on glycemic control of subjects with impaired fasting glucose. Diabetes Metab. Syndr. Obes. 2015, 8,

275–286. [CrossRef]

Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.T.; Li, H.B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.Y. Citrus

Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In

Vivo Studies. Nutrients 2020, 12, 907. [CrossRef]

Jang, S.E.; Ryu, K.R.; Park, S.H.; Chung, S.; Teruya, Y.; Han, M.J.; Woo, J.T.; Kim, D.H. Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-kappaB, AP-1 and p38. Int. Immunopharmacol.

2013, 17, 502–507. [CrossRef]

Lee, Y.S.; Cha, B.Y.; Saito, K.; Yamakawa, H.; Choi, S.S.; Yamaguchi, K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.T. Nobiletin

improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochem. Pharmacol. 2010, 79, 1674–1683. [CrossRef]

Matsuzaki, K.; Ohizumi, Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders.

Nutrients 2021, 13, 145. [CrossRef]

Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res.

Int. 2020, 132, 109114. [CrossRef] [PubMed]

Boucher, M.; Meen, M.; Codron, J.P.; Coudore, F.; Kemeny, J.L.; Eschalier, A. Cyclophosphamide-induced cystitis in freely-moving

conscious rats: Behavioral approach to a new model of visceral pain. J. Urol. 2000, 164, 203–208. [CrossRef]

Chuang, Y.C.; Yoshimura, N.; Huang, C.C.; Chiang, P.H.; Chancellor, M.B. Intravesical botulinum toxin a administration produces

analgesia against acetic acid induced bladder pain responses in rats. J. Urol. 2004, 172, 1529–1532. [CrossRef] [PubMed]

Boudes, M.; Uvin, P.; Kerselaers, S.; Vennekens, R.; Voets, T.; De Ridder, D. Functional characterization of a chronic

cyclophosphamide-induced overactive bladder model in mice. Neurourol. Urodyn. 2011, 30, 1659–1665. [CrossRef]

Auge, C.; Chene, G.; Dubourdeau, M.; Desoubzdanne, D.; Corman, B.; Palea, S.; Lluel, P.; Vergnolle, N.; Coelho, A.M. Relevance

of the cyclophosphamide-induced cystitis model for pharmacological studies targeting inflammation and pain of the bladder.

Eur. J. Pharmacol. 2013, 707, 32–40. [CrossRef]

Homan, T.; Tsuzuki, T.; Dogishi, K.; Shirakawa, H.; Oyama, T.; Nakagawa, T.; Kaneko, S. Novel mouse model of chronic

inflammatory and overactive bladder by a single intravesical injection of hydrogen peroxide. J. Pharmacol. Sci. 2013, 121, 327–337.

[CrossRef]

Birder, L.; Andersson, K.E. Animal Modelling of Interstitial Cystitis/Bladder Pain Syndrome. Int. Neurourol. J. 2018, 22, S3–s9.

[CrossRef]

Okinami, T.; Imamura, M.; Nishikawa, N.; Negoro, H.; Sugino, Y.; Yoshimura, K.; Kanematsu, A.; Hashitani, H.; Ogawa, O. Altered

detrusor gap junction communications induce storage symptoms in bladder inflammation: A mouse cyclophosphamide-induced

model of cystitis. PLoS ONE 2014, 9, e104216. [CrossRef]

Cajas, Y.N.; Cañón-Beltrán, K.; Ladrón de Guevara, M.; Millán de la Blanca, M.G.; Ramos-Ibeas, P.; Gutiérrez-Adán, A.; Rizos, D.;

González, E.M. Antioxidant Nobiletin Enhances Oocyte Maturation and Subsequent Embryo Development and Quality. Int. J.

Mol. Sci. 2020, 21, 5340. [CrossRef]

Kono, J.; Ueda, M.; Sengiku, A.; Suadicani, S.O.; Ogawa, O.; Negoro, H. Urothelium-Specific Deletion of Connexin 43 in the

Mouse Urinary Bladder Alters Distension-Induced ATP Release and Voiding Behavior. Int. J. Mol. Sci. 2021, 22, 1594. [CrossRef]

Negoro, H.; Kanematsu, A.; Doi, M.; Suadicani, S.O.; Matsuo, M.; Imamura, M.; Okinami, T.; Nishikawa, N.; Oura, T.; Matsui, S.;

et al. Involvement of urinary bladder Connexin 43 and the circadian clock in coordination of diurnal micturition rhythm. Nat.

Commun. 2012, 3, 809. [CrossRef] [PubMed]

Sengiku, A.; Ueda, M.; Kono, J.; Sano, T.; Nishikawa, N.; Kunisue, S.; Tsujihana, K.; Liou, L.S.; Kanematsu, A.; Shimba, S.;

et al. Circadian coordination of ATP release in the urothelium via connexin43 hemichannels. Sci. Rep. 2018, 8, 1996. [CrossRef]

[PubMed]

Int. J. Mol. Sci. 2022, 23, 5037

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

13 of 14

Birder, L.A.; Kullmann, F.A. Role of neurogenic inflammation in local communication in the visceral mucosa. Semin. Immunopathol.

2018, 40, 261–279. [CrossRef]

Birder, L.A. Urinary bladder, cystitis and nerve/urothelial interactions. Auton. Neurosci. 2014, 182, 89–94. [CrossRef]

Negoro, H.; Urban-Maldonado, M.; Liou, L.S.; Spray, D.C.; Thi, M.M.; Suadicani, S.O. Pannexin 1 channels play essential roles in

urothelial mechanotransduction and intercellular signaling. PLoS ONE 2014, 9, e106269. [CrossRef]

Li, W.; Wang, X.; Niu, X.; Zhang, H.; He, Z.; Wang, Y.; Zhi, W.; Liu, F. Protective Effects of Nobiletin Against Endotoxic Shock in

Mice Through Inhibiting TNF-α, IL-6, and HMGB1 and Regulating NF-κB Pathway. Inflammation 2016, 39, 786–797. [CrossRef]

[PubMed]

Lin, Z.; Wu, D.; Huang, L.; Jiang, C.; Pan, T.; Kang, X.; Pan, J. Nobiletin Inhibits IL-1β-Induced Inflammation in Chondrocytes via

Suppression of NF-κB Signaling and Attenuates Osteoarthritis in Mice. Front. Pharmacol. 2019, 10, 570. [CrossRef] [PubMed]

Wang, H.; Guo, Y.; Qiao, Y.; Zhang, J.; Jiang, P. Nobiletin Ameliorates NLRP3 Inflammasome-Mediated Inflammation Through

Promoting Autophagy via the AMPK Pathway. Mol. Neurobiol. 2020, 57, 5056–5068. [CrossRef]

Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol. 2015, 6, 262.

[CrossRef]

Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [CrossRef]

Chen, L.; Wang, H.; Ge, S.; Tai, S. IL-6/STAT3 pathway is involved in the regulation of autophagy in chronic non-bacterial

prostatitis cells, and may be affected by the NLRP3 inflammasome. Ultrastruct. Pathol. 2021, 45, 297–306. [CrossRef] [PubMed]

Lu, J.; Su, Y.; Chen, X.; Chen, Y.; Luo, P.; Lin, F.; Zhang, J. Rapamycin-induced autophagy attenuates hormone-imbalance-induced

chronic non-bacterial prostatitis in rats via the inhibition of NLRP3 inflammasome-mediated inflammation. Mol. Med. Rep. 2019,

19, 221–230. [CrossRef] [PubMed]

Hughes, F.M., Jr.; Hill, H.M.; Wood, C.M.; Edmondson, A.T.; Dumas, A.; Foo, W.C.; Oelsen, J.M.; Rac, G.; Purves, J.T. The

NLRP3 Inflammasome Mediates Inflammation Produced by Bladder Outlet Obstruction. J. Urol. 2016, 195, 1598–1605. [CrossRef]

[PubMed]

Hughes, F.M., Jr.; Hirshman, N.A.; Inouye, B.M.; Jin, H.; Stanton, E.W.; Yun, C.E.; Davis, L.G.; Routh, J.C.; Purves, J.T. NLRP3

Promotes Diabetic Bladder Dysfunction and Changes in Symptom-Specific Bladder Innervation. Diabetes 2019, 68, 430–440.

[CrossRef]

Hughes, F.M., Jr.; Sexton, S.J.; Jin, H.; Govada, V.; Purves, J.T. Bladder fibrosis during outlet obstruction is triggered through the

NLRP3 inflammasome and the production of IL-1β. Am. J. Physiol. Renal. Physiol. 2017, 313, F603–F610. [CrossRef]

Lütolf, R.; Hughes, F.M., Jr.; Inouye, B.M.; Jin, H.; McMains, J.C.; Pak, E.S.; Hannan, J.L.; Purves, J.T. NLRP3/IL-1β mediates

denervation during bladder outlet obstruction in rats. Neurourol. Urodyn. 2018, 37, 952–959. [CrossRef]

Hughes, F.M., Jr.; Vivar, N.P.; Kennis, J.G.; Pratt-Thomas, J.D.; Lowe, D.W.; Shaner, B.E.; Nietert, P.J.; Spruill, L.S.; Purves, J.T.

Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation. Am. J. Physiol. Renal. Physiol.

2014, 306, F299–F308. [CrossRef]

Chen, L.; He, P.L.; Yang, J.; Yang, Y.F.; Wang, K.; Amend, B.; Stenzl, A.; Zhang, Y.M.; Wang, Z.L.; Xing, S.S.; et al. NLRP3/IL1beta

inflammasome associated with the aging bladder triggers bladder dysfunction in female rats. Mol. Med. Rep. 2019, 19, 2960–2968.

[CrossRef]

Verma, V.; Gupta, S.; Kumar, P.; Yadav, S.; Dhanda, R.S.; Gaind, R.; Arora, R.; Frimodt-Moller, N.; Yadav, M. Involvement of

NLRP3 and NLRC4 Inflammasome in Uropathogenic E. coli Mediated Urinary Tract Infections. Front. Microbiol. 2019, 10, 2020.

[CrossRef]

Shih, H.J.; Chang, C.Y.; Lai, C.H.; Huang, C.J. Therapeutic effect of modulating the NLRP3-regulated transforming growth

factor-beta signaling pathway on interstitial cystitis/bladder pain syndrome. Biomed. Pharmacother. 2021, 138, 111522. [CrossRef]

Korkmaz, A.; Topal, T.; Oter, S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis;

implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol. Toxicol. 2007, 23, 303–312. [CrossRef]

[PubMed]

Malley, S.E.; Vizzard, M.A. Changes in urinary bladder cytokine mRNA and protein after cyclophosphamide-induced cystitis.

Physiol. Genomics 2002, 9, 5–13. [CrossRef] [PubMed]

Wong, P.; Laxton, V.; Srivastava, S.; Chan, Y.W.; Tse, G. The role of gap junctions in inflammatory and neoplastic disorders

(Review). Int. J. Mol. Med. 2017, 39, 498–506. [CrossRef] [PubMed]

Cliff, C.L.; Williams, B.M.; Chadjichristos, C.E.; Mouritzen, U.; Squires, P.E.; Hills, C.E. Connexin 43: A Target for the Treatment of

Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. Int. J. Mol. Sci. 2022, 23, 600. [CrossRef]

Swartzendruber, J.A.; Nicholson, B.J.; Murthy, A.K. The Role of Connexin 43 in Lung Disease. Life 2020, 10, 363. [CrossRef]

Zhang, X.; Yao, J.; Gao, K.; Chi, Y.; Mitsui, T.; Ihara, T.; Sawada, N.; Kamiyama, M.; Fan, J.; Takeda, M. AMPK Suppresses

Connexin 43 Expression in the Bladder and Ameliorates Voiding Dysfunction in Cyclophosphamide-induced Mouse Cystitis. Sci.

Rep. 2016, 6, 19708. [CrossRef]

Willebrords, J.; Crespo Yanguas, S.; Maes, M.; Decrock, E.; Wang, N.; Leybaert, L.; Kwak, B.R.; Green, C.R.; Cogliati, B.; Vinken, M.

Connexins and their channels in inflammation. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 413–439. [CrossRef]

Peng, B.; Xu, C.; Wang, S.; Zhang, Y.; Li, W. The Role of Connexin Hemichannels in Inflammatory Diseases. Biology 2022, 11, 237.

[CrossRef]

Int. J. Mol. Sci. 2022, 23, 5037

59.

60.

61.

62.

63.

64.

65.

14 of 14

Final report on the safety assessment of Glycyrrhetinic Acid, Potassium Glycyrrhetinate, Disodium Succinoyl Glycyrrhetinate,

Glyceryl Glycyrrhetinate, Glycyrrhetinyl Stearate, Stearyl Glycyrrhetinate, Glycyrrhizic Acid, Ammonium Glycyrrhizate, Dipotassium Glycyrrhizate, Disodium Glycyrrhizate, Trisodium Glycyrrhizate, Methyl Glycyrrhizate, and Potassium Glycyrrhizinate.

Int. J. Toxicol. 2007, 26 (Suppl. 2), 79–112. [CrossRef]

Deutch, M.R.; Grimm, D.; Wehland, M.; Infanger, M.; Krüger, M. Bioactive Candy: Effects of Licorice on the Cardiovascular

System. Foods 2019, 8, 495. [CrossRef]

Roza, J.M.; Xian-Liu, Z.; Guthrie, N. Effect of citrus flavonoids and tocotrienols on serum cholesterol levels in hypercholesterolemic

subjects. Altern. Ther. Health Med. 2007, 13, 44–48. [PubMed]

Yamada, S.; Shirai, M.; Ono, K.; Teruya, T.; Yamano, A.; Tae Woo, J. Beneficial effects of a nobiletin-rich formulated supplement

of Sikwasa (C. depressa) peel on cognitive function in elderly Japanese subjects; A multicenter, randomized, double-blind,

placebo-controlled study. Food Sci. Nutr. 2021, 9, 6844–6853. [CrossRef] [PubMed]

Schuchardt, J.P.; Heine, S.; Hahn, A. A combination of palm oil tocotrienols and citrus peel polymethoxylated flavones does

not influence elevated LDL cholesterol and high-sensitivity C-reactive protein levels. Eur. J. Clin. Nutr. 2015, 69, 1209–1214.

[CrossRef] [PubMed]

Kim, J.; Ji, M.; DiDonato, J.A.; Rackley, R.R.; Kuang, M.; Sadhukhan, P.C.; Mauney, J.R.; Keay, S.K.; Freeman, M.R.; Liou, L.S.; et al.

An hTERT-immortalized human urothelial cell line that responds to anti-proliferative factor. In Vitro Cell Dev. Biol. Anim. 2011, 47,

2–9. [CrossRef] [PubMed]

el-Fouly, M.H.; Trosko, J.E.; Chang, C.C. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional

intercellular communication. Exp. Cell Res. 1987, 168, 422–430. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る