リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy (本文)

高里, 良宏 慶應義塾大学

2021.10.11

概要

Oral immunotherapy (OIT) is an effective approach to controlling food allergy. Although the detailed molecular and cellular mechanisms of OIT are unknown currently, they must be understood to advance the treatment of allergic diseases in general. To elucidate the mechanisms of OIT, especially during the immunological transition from desensitization to allergy regulation, we generated a clinical OIT murine model and used it to examine immunological events of OIT. We found that in mice that completed OIT successfully, desensitized mast cells (MCs) showed functionally beneficial alterations, such as increased induction of regulatory cytokines and enhanced expansion of regulatory T cells. Importantly, these regulatory-T-cell-mediated inhibitions of allergic responses were dramatically decreased in mice lacking OIT-induced desensitized MC. Collectively, these findings show that the desensitization process modulates the activation of MCs, leading directly to enhanced induction of regulatory-T-cell expansion and promotion of clinical allergic unresponsiveness. Our results suggest that efficiently inducing regulatory MCs is a novel strategy for the treatment of allergic disease.

この論文で使われている画像

関連論文

参考文献

1. Longo, G., Berti, I., Burks, A. W., Krauss, B. & Barbi, E. IgE-mediated food allergy in children. Lancet 382, 1656–1664 (2013).

2. Sicherer, S. H. Epidemiology of food allergy. J. Allergy Clin. Immunol. 127, 594–602 (2011).

3. Lieberman, P. et al. The diagnosis and management of anaphylaxis practice parameter: 2010 update. J. Allergy Clin. Immunol. 126, 477–480.e471-442 (2010).

4. Yamani A., et al. Dysregulation of intestinal epithelial CFTR-dependent Cl(-) ion transport and paracellular barrier function drives gastrointestinal symptoms of food-induced anaphylaxis in mice. Mucosal Immunol. https://doi.org/10.1038/ s41385-020-0306-6. [Ebup ahead of print] (2020).

5. Melendez, A. J. et al. Inhibition of Fc epsilon RI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat. Med. 13, 1375–1381 (2007).

6. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

7. Brown, S. G. et al. Anaphylaxis: clinical patterns, mediator release, and severity. J. Allergy Clin. Immunol. 132, 1141–1149.e1145 (2013).

8. Soter, N. A., Austen, K. F. & Wasserman, S. I. Oral disodium cromoglycate in the treatment of systemic mastocytosis. N. Engl. J. Med. 301, 465–469 (1979).

9. Harvima, I. T. et al. Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 134, 530–544 (2014).

10. McLeod, J. J., Baker, B. & Ryan, J. J. Mast cell production and response to IL-4 and IL-13. Cytokine 75, 57–61 (2015).

11. Kurashima, Y. et al. Sphingosine 1-phosphate-mediated trafficking of pathogenic Th2 and mast cells for the control of food allergy. J. Immunol. 179, 1577–1585 (2007).

12. Kweon, M. N., Yamamoto, M., Kajiki, M., Takahashi, I. & Kiyono, H. Systemically derived large intestinal CD4(+) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J. Clin. Investig. 106, 199–206 (2000).

13. Akdis, M. & Akdis, C. A. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J. Allergy Clin. Immunol. 133, 621–631 (2014).

14. Larche, M., Akdis, C. A. & Valenta, R. Immunological mechanisms of allergen- specific immunotherapy. Nat. Rev. Immunol. 6, 761–771 (2006).

15. Blumchen, K. et al. Oral peanut immunotherapy in children with peanut ana- phylaxis. J. Allergy Clin. Immunol. 126, 83–91.e81 (2010).

16. Wood, R. A. Oral Immunotherapy for Food Allergy. J. Investig. Allergol. Clin. Immunol. 27, 151–159 (2017).

17. Chinthrajah, R. S., Hernandez, J. D., Boyd, S. D., Galli, S. J. & Nadeau, K. C. Molecular and cellular mechanisms of food allergy and food tolerance. J. Allergy Clin. Immunol. 137, 984–997 (2016).

18. Burks, A. W. et al. Oral immunotherapy for treatment of egg allergy in children. N. Engl. J. Med. 367, 233–243 (2012).

19. Leveson-Gower, D. B. et al. Mast cells suppress murine GVHD in a mechanism independent of CD4+CD25+ regulatory T cells. Blood 122, 3659–3665 (2013).

20. Morita, H. et al. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain- Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immu- nity 43, 175–186 (2015).

21. Galli, S. J. et al. Approaches for analyzing the roles of mast cells and their pro- teases in vivo. Adv. Immunol. 126, 45–127 (2015).

22. Sawaguchi, M. et al. Role of mast cells and basophils in IgE responses and in allergic airway hyperresponsiveness. J. Immunol. 188, 1809–1818 (2012).

23. Keet, C. A. et al. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. J. Allergy Clin. Immunol. 129, 448–455 (2012). 455 e441-445.

24. Khodoun, M. V. et al. Rapid polyclonal desensitization with antibodies to IgE and FcepsilonRIalpha. J. Allergy Clin. Immunol. 131, 1555–1564 (2013).

25. Kurashima, Y. et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat. Commun. 3, 1034 (2012).

26. Dawicki, W., Li, C., Town, J., Zhang, X. & Gordon, J. R. Therapeutic reversal of food allergen sensitivity by mature retinoic acid-differentiated dendritic cell induction of LAG3+CD49b-Foxp3- regulatory T cells. J. Allergy Clin. Immunol. 139, 1608–1620.e1603 (2017).

27. Noval Rivas, M. & Chatila, T. A. Regulatory T cells in allergic diseases. J. Allergy Clin. Immunol. 138, 639–652 (2016).

28. Takayama, N., Igarashi, O., Kweon, M. N. & Kiyono, H. Regulatory role of Peyer’s patches for the inhibition of OVA-induced allergic diarrhea. Clin. Immunol. 123, 199–208 (2007).

29. Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).

30. Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen- mediated induction of peripheral T(reg) cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

31. de Vries, V. C. et al. Mast cells condition dendritic cells to mediate allograft tolerance. Immunity 35, 550–561 (2011).

32. Rodrigues, C. P. et al. Tolerogenic IDO(+) Dendritic Cells Are Induced by PD-1- Expressing Mast Cells. Front. Immunol. 7, 9 (2016).

33. Feng, B. S. et al. Disruption of T-cell immunoglobulin and mucin domain mole- cule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J. Allergy Clin. Immunol. 122, 55–61 (2008). 61 e51-57.

34. Mazzini, E., Massimiliano, L., Penna, G. & Rescigno, M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macro- phages to CD103(+) dendritic cells. Immunity 40, 248–261 (2014).

35. Salamon, P. et al. IL-33 and IgE stimulate mast cell production of IL-2 and reg- ulatory T cell expansion in allergic dermatitis. Clin. Exp. Allergy 47, 1409–1416 (2017).

36. Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

37. Oka, T., Rios, E. J., Tsai, M., Kalesnikoff, J. & Galli, S. J. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells. J. Allergy Clin. Immunol. 132, 922–932.e921-916 (2013).

38. Sancho-Serra Mdel, C., Simarro, M. & Castells, M. Rapid IgE desensitization is antigen specific and impairs early and late mast cell responses targeting Fcep- silonRI internalization. Eur. J. Immunol. 41, 1004–1013 (2011).

39. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268, 1472–1476 (1995).

40. Sadlack, B. et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur. J. Immunol. 25, 3053–3059 (1995).

41. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu Rev. Immunol. 30, 531–564 (2012).

42. Burton, O. T., Tamayo, J. M., Stranks, A. J., Koleoglou, K. J. & Oettgen, H. C. Allergen-specific IgG antibody signaling through FcgammaRIIb promotes food tolerance. J. Allergy Clin. Immunol. 141, 189–201.e183 (2018).

43. Tunis, M. C., Dawicki, W., Carson, K. R., Wang, J. & Marshall, J. S. Mast cells and IgE activation do not alter the development of oral tolerance in a murine model. J. Allergy Clin. Immunol. 130, 705–715.e701 (2012).

44. Bonnet, B. et al. Low-Dose IL-2 Induces Regulatory T Cell-Mediated Control of Experimental Food Allergy. J. Immunol. 197, 188–198 (2016).

45. Mizui, M. & Tsokos, G. C. Targeting Regulatory T Cells to Treat Patients With Systemic Lupus Erythematosus. Front. Immunol. 9, 786 (2018).

46. He, X., Koenen, H. J., Slaats, J. H. & Joosten, I. Stabilizing human regulatory T cells for tolerance inducing immunotherapy. Immunotherapy 9, 735–751 (2017).

47. Xie, M. M. et al. T follicular regulatory cells and IL-10 promote food antigen- specific IgE. J. Clin. Investig. 130, 3820–3832 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る