リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multiscale clustering of heavy and light small particles in turbulent channel flow at high Reynolds numbers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multiscale clustering of heavy and light small particles in turbulent channel flow at high Reynolds numbers

Motoori, Yutaro 大阪大学

2023.08.01

概要

We investigate the behaviour of heavy and light small
particles in wall turbulence at high Reynolds numbers. Since
the transport of heavy small particles is related to various
natural and engineering systems such as the formation of rain
droplets (Vaillancourt and Yau, 2000; Shaw, 2003; Saito and
Gotoh, 2018; Matsuda, Schneider and Yoshimatsu, 2021),
sediments at the bottom of rivers (Seminara, 2010; Scherer,
Uhlmann, Kidanemariam and Krayer, 2022) and aggregation of particles in combustion engines (Guzzella and Onder, 2009), there are a substantial number of fundamental
studies on the turbulent transport of heavy particles in homogeneous isotropic turbulence (Riley and Patterson, 1974;
Squires and Eaton, 1990, 1991; Yeung, 2002; Yoshimoto
and Goto, 2007; Toschi and Bodenschatz, 2009; Balachandar and Eaton, 2010; Monchaux, Bourgoin and Cartellier,
2012; Gustavsson and Mehlig, 2016; Oka and Goto, 2021),
which is a model of turbulence away from the wall, and in
near-wall turbulence (Caporaloni, Tampieri, Trombetti and
Vittori, O., 1975; Reeks, 1983; Marchioli and Soldati, 2002;
Marchioli, Giusti, Salvetti and Soldati, 2003; Narayanan,
Lakehal, Botto and Soldati, 2003; Picciotto, Marchioli and
Soldati, 2005; Picano, Sardina and Casciola, 2009; Soldati
and Marchioli, 2009; Sardina, Schlatter, Brandt, Picano and
Casciola, 2012; Bernardini, 2014; Johnson, Bassenne and
Moin, 2020; Brandt and Coletti, 2022).
In the near-wall region, the turbulent transport of heavy
particles is well described in terms of coherent flow structures (Soldati and Marchioli, 2009); when the relaxation
time of the particles is comparable with the turnover time
of streamwise vortices in the buffer layer, the particles tend
to be swept out from the vortex core. Then, these particles
are accumulated in low-speed streaks accompanied by the
streamwise vortices. In other words, since there is no scale
separation in turbulence at low Reynolds numbers, particles
y.motoori.es@osaka-u.ac.jp (Y. Motoori);
s.goto.es@osaka-u.ac.jp (S. ...

この論文で使われている画像

参考文献

Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow.

Annu. Rev. Fluid Mech. 42, 111–133.

Berk, T., Coletti, F., 2020. Transport of inertial particles in high-Reynoldsnumber turbulent boundary layers. J. Fluid Mech. 903, A18.

Bernardini, M., 2014. Reynolds number scaling of inertial particle statistics

in turbulent channel flows. J. Fluid Mech. 758, R1.

Brandt, L., Coletti, F., 2022. Particle-laden turbulence: progress and

perspectives. Annu. Rev. Fluid Mech. 2022 54, 159–189.

Calzavarini, E., Kerscher, M., Lohse, D., Toschi, F., 2008. Dimensionality

and morphology of particle and bubble clusters in turbulent flow. J. Fluid

Mech. 607, 13–24.

Caporaloni, M., Tampieri, F., Trombetti, F., Vittori, O., 1975. Transfer of

particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565–568.

Douady, S., Couder, Y., Brachet, M.E., 1991. Direct observation of the

intermittency of intense vorticity filaments in turbulence. Phys. Rev.

Lett. 67, 983.

Gustavsson, K., Mehlig, B., 2016. Statistical models for spatial patterns of

heavy particles in turbulence. Adv. Phys. 65, 1–57.

Guzzella, L., Onder, C., 2009. Introduction to modeling and control of

internal combustion engine systems. Springer Science & Business

Media.

Hoyas, S., Jiménez, J., 2008. Reynolds number effects on the Reynoldsstress budgets in turbulent channels. Phys. Fluids 20, 101511.

Hwang, J., Lee, J., Sung, H.J., Zaki, T.A., 2016. Inner-outer interactions

of large-scale structures in turbulent channel flow. J. Fluid Mech. 790,

128–157.

Jie, Y., Cui, Z., Xu, C., Zhao, L., 2022. On the existence and formation of

multi-scale particle streaks in turbulent channel flows. J. Fluid Mech.

935, A18.

Jiménez, J., 2013. Near-wall turbulence. Phys. Fluids 25, 101302.

Johnson, P.L., Bassenne, M., Moin, P., 2020. Turbophoresis of small inertial

particles: theoretical considerations and application to wall-modelled

large-eddy simulations. J. Fluid Mech. 883, A27.

Kida, S., Miura, H., 1998. Identification and analysis of vortical structures.

Eur. J. Mech. B/Fluids 17, 471–488.

Lakehal, D., Métrailler, D., Reboux, S., 2017. Turbulent water flow in a

channel at 𝑅𝑒𝜏 = 400 laden with 0.25 mm diameter air-bubbles clustered

near the wall. Phys. Fluids 29, 065101.

Lee, J., Lee, J.H., Choi, J.I., Sung, H.J., 2014. Spatial organization of largeand very-large-scale motions in a turbulent channel flow. J. Fluid Mech.

749, 818–840.

Lee, J., Sung, H.J., Zaki, T.A., 2017. Signature of large-scale motions on

turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819,

165–187.

Lozano-Durán, A., Holzner, M., Jiménez, J., 2016. Multiscale analysis of

the topological invariants in the logarithmic region of turbulent channels

at a friction Reynolds number of 932. J. Fluid Mech. 803, 356–394.

Marchioli, C., Giusti, A., Salvetti, M.V., Soldati, A., 2003. Direct numerical

simulation of particle wall transfer and deposition in upward turbulent

pipe flow. Int. J. Multiph. Flow 29, 1017–1038.

Marchioli, C., Soldati, A., 2002. Mechanisms for particle transfer and

segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283–315.

Matsuda, K., Schneider, K., Yoshimatsu, K., 2021. Scale-dependent statistics of inertial particle distribution in high Reynolds number turbulence.

Phys. Rev. Fluids 6, 064304.

Maxey, M.R., 1987. The gravitational settling of aerosol particles in

homogeneous turbulence and random flow fields. J. Fluid Mech. 174,

441–465.

Miura, H., Kida, S., 1997. Identification of tubular vortices in turbulence.

J. Phys. Soc. Jpn. 66, 1331–1334.

Monchaux, R., Bourgoin, M., Cartellier, A., 2012. Analyzing preferential

concentration and clustering of inertial particles in turbulence. Int. J.

Multiph. Flow 40, 1–18.

Motoori, Y., Goto, S., 2021. Hierarchy of coherent structures and real-space

energy transfer in turbulent channel flow. J. Fluid Mech. 911, A27.

Motoori, Y., Wong, C., Goto, S., 2022. Role of the hierarchy of coherent

structures in the transport of heavy small particles in turbulent channel

Page 8 of 9

Multiscale clustering of heavy and light small particles in turbulent channel flow at high Re

flow. J. Fluid Mech. 942, A3.

Narayanan, C., Lakehal, D., Botto, L., Soldati, A., 2003. Mechanisms of

particle deposition in a fully developed turbulent open channel flow.

Phys. Fluids 15, 763–775.

Oka, S., Goto, S., 2021. Generalized sweep-stick mechanism of inertialparticle clustering in turbulence. Phys. Rev. Fluids 6 , 044605.

Oka, S., Watanabe, D., Goto, S., 2021. Large-scale clustering of light small

particles in developed turbulence. Phys. Fluids 33, 285.

Park, H.J., Saito, D., Tasaka, Y., Murai, Y., 2019. Color-coded visualization

of microbubble clouds interacting with eddies in a spatially developing

turbulent boundary layer. Exp. Therm. Fluid Sci. 109, 109919.

Picano, F., Sardina, G., Casciola, C.M., 2009. Spatial development of

particle-laden turbulent pipe flow. Phys. Fluids 21, 093305.

Picciotto, M., Marchioli, C., Soldati, A., 2005. Characterization of nearwall accumulation regions for inertial particles in turbulent boundary

layers. Phys. Fluids 17, 098101.

Reeks, M.W., 1983. The transport of discrete particles in inhomogeneous

turbulence. J. Aero. Sci. 14, 729–739.

Riley, J.J., Patterson, G.S., 1974. Diffusion experiments with numerically

integrated isotropic turbulence. Phys. Fluids 17, 292–297.

Saito, I., Gotoh, T., 2018. Turbulence and cloud droplets in cumulus clouds.

New J. Phys. 20, 023001.

Sardina, G., Schlatter, P., Brandt, L., Picano, F., Casciola, C.M., 2012. Wall

accumulation and spatial localization in particle-laden wall flows. J.

Fluid Mech. 699, 50–78.

Scherer, M., Uhlmann, M., Kidanemariam, A.G., Krayer, M., 2022. On the

role of turbulent large-scale streaks in generating sediment ridges. J.

Fluid Mech. 930, A11.

Seminara, G., 2010. Fluvial sedimentary patterns. Annu. Rev. Fluid Mech.

42, 43–66.

Shaw, R.A., 2003. Particle-turbulence interactions in atmospheric clouds.

Annu. Rev. Fluid Mech. 35, 183–227.

Soldati, A., Marchioli, C., 2009. Physics and modelling of turbulent

particle deposition and entrainment: Review of a systematic study. Int.

J. Multiph. Flow 35, 827–839.

Squires, K.D., Eaton, J.K., 1990. Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A 2, 1191–1203.

Squires, K.D., Eaton, J.K., 1991. Preferential concentration of particles by

turbulence. Phys. Fluids A 3, 1169–1178.

Tagawa, Y., Mercado, J.M., Prakash, V.N., Calzavarini, E., Sun, C., Lohse,

D., 2012. Three-dimensional Lagrangian Voronoï analysis for clustering

of particles and bubbles in turbulence. J. Fluid Mech. 693, 201–215.

Toschi, F., Bodenschatz, E., 2009. Lagrangian properties of particles in

turbulence. Annu. Rev. Fluid Mech. 41, 375–404.

Vaillancourt, P.A., Yau, M.K., 2000. Review of Particle-Turbulence Interactions and Consequences for Cloud Physics. Bull. Am. Met. Soc. 81.

Yeung, P.K., 2002. Lagrangian investigations of turbulence. Annu. Rev.

Fluid Mech. 34, 115–142.

Yoshimoto, H., Goto, S., 2007. Self-similar clustering of inertial particles

in homogeneous turbulence. J. Fluid Mech. 577, 275–286.

Zhai, J., Fairweather, M., Colombo, M., 2020. Simulation of microbubble

dynamics in turbulent channel flows. Flow Turbul. Combust. 105, 1303–

1324.

Preprint submitted to Elsevier

Page 9 of 9

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る