リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Impact of high-temperature implantation of Mg ions into GaN」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Impact of high-temperature implantation of Mg ions into GaN

Takahashi, Masahiro Tanaka, Atsushi Ando, Yuto Watanabe, Hirotaka Deki, Manato Kushimoto, Maki Nitta, Shugo Honda, Yoshio Shima, Kohei Kojima, Kazunobu Chichibu, Shigefusa F. Amano, Hiroshi 名古屋大学

2020.05.07

概要

Magnesium (Mg) ion implantation into gallium nitride (GaN) at 1000 °C is proposed. Since ion implantation and annealing occur simultaneously in high-temperature implantation, it is considered that Mg ions can be introduced at an appropriate position upon their implantation. GaN vertical diodes implanted with Mg ions were fabricated and current–voltage measurements were performed. As a result, clear rectifying properties were confirmed in a sample that was implanted with Mg ions at 1000 °C and annealed after implantation. However, the sample subjected to Mg ion implantation at RT and annealed after implantation showed no clear rectification. These results show that high-temperature implantation of Mg ions at 1000 °C reduces Mg ion implantation-induced damage and simultaneously activates Mg ions upon their implantation.

参考文献

1) A. Uedono, S. Takashima, M. Edo, K. Ueno, H. Matsuyama, W. Egger, T.

Koschine, C. Hugenschmidt, M. Dickmann, K. Kojima, S. F. Chichibu, and S.

Ishibashi, Phys. Status Solidi B 255, 1700521 (2018).

2) S. F. Chichibu, K. Shima, K. Kojima, S. Takashima, K. Ueno, M. Edo, H. Iguchi,

T. Narita, K. Kataoka, S. Ishibashi, and A. Uedono, Jpn. J. Appl. Phys. 58,

SC0802 (2019).

3) C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

4) A. Uedono, S. Takashima, M. Edo, K. Ueno, H. Matsuyama, H. Kudo, H.

Naramoto, and S. Ishibashi, Phys. Status Solidi B 252, 2794 (2015).

5) A. Wenzel, C. Liu, and B. Rauschenbach, Mater. Sci. Eng. B 59, 191 (1999).

6) S. Whelan, M. J. Kelly, R. Gwilliam, C. Jeynes, and C. Bongiorno, J. Appl. Phys.

98, 013515 (2005).

7) A. Lardeau-Falcy, M. Coig, M. Charles, C. Licitra, J. Kanyandekwe, F. Milési, J.

Eymery, and F. Mazen, ECS Trans. 80, 131 (2017).

8) T. Niwa, T. Fujii, and T. Oka, Appl. Phys. Express 10, 091002 (2017).

9) A. Kumar, K. Mitsuishi, T. Hara, K. Kimoto, Y. Irokawa, T. Nabatame, S.

Takashima, K. Ueno, M. Edo, and Y. Koide, Nanoscale Res. Lett. 13, 403 (2018).

10) M. Sumiya, K. Fukuda, S. Takashima, S. Ueda, T. Onuma, T. Yamaguchi, T.

Honda, A. Uedono, Journal of Crystal Growth 511, 15 (2019).

11) I. O. Usov, N. R. Parikh, D. Thomson, and R. F. Davis, Mater. Res. Soc. Symp.

Proc. 693, I11.12 (2001).

12) T. Oikawa, Y. Saijo, S. Kato, T. Mishima, and T. Nakamura, Nucl. Instrum.

Methods Phys. Res., Sect. B 365, 168 (2015).

13) J. D. Greenlee, T. J. Anderson, B. N. Feigelson, K. D. Hobart, and F. J. Kub, Phys.

Status Solidi A 212, 2772 (2015).

14) T. Narita, T. Kachi, K. Kataoka, and T. Uesugi, Appl. Phys. Express 10, 016501

(2017).

15) R. Tanaka, S. Takashima, K. Ueno, H. Matsuyama, M. Edo, and K. Nakagawa,

Appl. Phys. Express 12, 054001 (2019).

16) M. Yoshino, K. Sugamata, K. Ikeda, T. Nishimura, K. Kuriyama, and T.

13

Template for JJAP Regular Papers (Jan. 2014)

Nakamura, Nucl. Instrum. Methods Phys. Res., Sect. B 449, 49 (2019).

17) M. Yoshino, Y. Ando, M. Deki, T. Toyabe, K. Kuriyama,Y. Honda, T. Nishimura,

H. Amano, T. Kachi, and T. Nakamura, Materials 12, 689 (2019).

18) R. Tanaka, S. Takashima, K. Ueno, H. Matsuyama, and M. Edo, Jpn. J. Appl.

Phys. 59, SGGD02 (2020).

19) H. Sakurai, M. Omori, S. Yamada, Y. Furukawa, H. Suzuki, T. Narita, K. Kataoka,

M. Horita, M. Bockowski, J. Suda, and T. Kachi, Appl. Phys. Lett. 115, 142104

(2019).

20) M. Sumiya, K. Fukuda, H. Iwai, T. Yamaguchi, T. Onuma, and T. Honda, AIP

Adv. 8, 115225 (2018).

21) S. M. C. Miranda, P. Kessler, J. G. Correia, R. Vianden, K. Johnston, E. Alves, and

K. Lorenz, Phys. Status Solidi C 9, 1060 (2012).

22) S. M. C. Miranda, P. R. Edwards, K. P. O’Donnell, M. Boćkowski, E. Alves, I. S.

Roqan, A. Vantomme, and K. Lorenz, Phys. Status Solidi C 11, 253 (2014).

23) M. A. Reshchikov, D. O. Demchenko, J. D. McNamara, S. Fernández-Garrido,

and R. Calarco, Phys. Rev. B 90, 035207 (2014).

24) K. Kojima, S. Takashima, A. Edo, K. Ueno, M. Shimizu, T. Takahashi, S.

Ishibashi, A. Uedono, and S. F. Chichibu, Appl. Phys. Express 10, 061002 (2017).

25) K. Shima, H. Iguchi, T. Narita, K. Kataoka, K. Kojima, A. Uedono, and S. F.

Chichibu, Appl. Phys. Lett. 113, 191901 (2018).

26) A. G. Jacobs, B. N. Feigelson, J. K. Hite, C. A. Gorsak, L. E. Luna, T. J.

Anderson, and F. J. Kub, Jpn. J. Appl. Phys. 58, SCCD07 (2019).

27) S. F. Chichibu, K. Shima, K. Kojima, S. Takashima, M. Edo, K. Ueno, S.

Ishibashi, and A. Uedono, Appl. Phys. Lett. 112, 211901 (2018).

28) A. Kumar, J. Uzuhashi, T. Ohkubo, R. Tanaka, S. Takashima, M. Edo, and K.

Hono, J. Appl. Phys. 126, 235704 (2019).

29) H. Fukushima, S. Usami, M. Ogura, Y. Ando, A. Tanaka, M. Deki, M. Kushimoto,

S. Nitta, Y. Honda, and H. Amano, Jpn. J. Appl. Phys. 58, SCCD25 (2019).

30) T. Nakamura, M. Yoshino, H. Tsuge, K. Ikeda, and K. Kuriyama, Surface &

Coatings Technology 355, 7 (2018).

14

Template for JJAP Regular Papers (Jan. 2014)

Figure Captions

Fig. 1. Illustration of simple process flow and Mg-ion-implanted (Mg-I/I) GaN sample

structure.

Fig. 2. [Mg] profile obtained by SRIM calculation.

Fig. 3. XRD spectra in 2θ−ω scan mode of Mg-implanted GaN samples (as-implanted) and

unimplanted UID-GaN.

Fig. 4. PL spectra at 77 K for (a) Mg-implanted GaN at RT (as-implanted), (b) Mg-implanted

GaN at 800 °C (as-implanted), and (c) Mg-implanted GaN at 1000 °C (as-implanted).

Fig. 5. Cross-sectional TEM images of (a) Mg-implanted GaN at RT (as-implanted), (b) Mgimplanted GaN at 800 °C (as-implanted), and (c) Mg-implanted GaN at 1000 °C (asimplanted).

Fig. 6. PL spectra at 77 K for (a) Mg-implanted GaN at RT (after annealing), (b) Mgimplanted GaN at 800 °C (after annealing), and (c) Mg-implanted GaN at 1000 °C (after

annealing). (d) is spectra of NBE and DAP emission regions of (a)−(c) showing the PL

intensity axis on a linear scale.

Fig. 7. Cross-sectional TEM images of (a) Mg-implanted GaN at RT (after annealing), (b)

Mg-implanted GaN at 800 °C (after annealing), and (c) Mg-implanted GaN at 1000 °C (after

annealing).

Fig. 8. I−V characteristics of vertical diodes fabricated using (a) Mg-implanted GaN at RT

(after annealing), (b) Mg-implanted GaN at 800 °C (after annealing), and (c) Mg-implanted

GaN at 1000 °C (after annealing). The upper row is a semi-log scale and the lower row is a

linear scale.

15

Template for JJAP Regular Papers (Jan. 2014)

Mg

Ni/Au

SiN

Mg-I/I layer

UID-GaN

(MOVPE)

5 μm

SiN

Mg-I/I layer

n-GaN sub.

UID-GaN

UID-GaN

n-GaN sub.

n-GaN sub.

Heating

SiN

Mg-I/I layer

SiN

Al

① Mg ion

implantation

② Post-implantation

annealing

③ Fabrication of

vertical diodes

Fig. 1.

16

Template for JJAP Regular Papers (Jan. 2014)

-3

Mg concentration (cm )

20

10

19

10

100 keV

40 keV

Total

18

10

17

10

16

10

SiN GaN

50 100 150 200 250 300

Depth (nm)

Fig. 2.

17

Template for JJAP Regular Papers (Jan. 2014)

Intensity (counts)

10

104

RT implantation (as-implanted)

800℃ implantation (as-implanted)

1000℃ implantation (as-implanted)

Unimplanted UID-GaN

Occurrence of

lattice expansion

GaN

(0002)

10

10

10

10

34.1 34.2 34.3 34.4 34.5 34.6 34.7

2Theta (deg)

Fig. 3.

18

Template for JJAP Regular Papers (Jan. 2014)

PL intensity (arb.unit)

10

10

(a) RT implantation

(as-implanted)

(b) 800℃ implantation

(as-implanted)

(c) 1000℃ implantation

(as-implanted)

DAP

10

GL

DAP

NBE

GL

GL

10

10

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

Photon energy (eV)

Fig. 4.

19

1.5

2.0

2.5

3.0

3.5

Template for JJAP Regular Papers (Jan. 2014)

50 nm

(a) RT implantation

(as-implanted)

50 nm

50 nm

(b) 800℃ implantation

(as-implanted)

Fig. 5.

20

(c) 1000℃ implantation

(as-implanted)

Template for JJAP Regular Papers (Jan. 2014)

NBE

GL

DAP

(b) 800℃ implantation

(after annealing) DAP

NBE

GL

(c) 1000℃ implantation

(after annealing)

DAP

NBE

GL

1x10

8x102

10

6x10

Linear scale

(d)

DAP DAP

-LO

1000℃

800℃

NBE

PL intensity (arb. unit)

10

1.2x10

(a) RT implantation

(after annealing)

NBE-LO

10

4x10

10

2x10

10

1.5

2.0

2.5

3.0

3.5

1.5

2.0

2.5

3.0

3.5

Photon energy (eV)

Fig. 6.

21

1.5

2.0

2.5

3.0

3.5

RT

3.0 3.1 3.2 3.3 3.4 3.5

Template for JJAP Regular Papers (Jan. 2014)

50 nm

(a) RT implantation

(after annealing)

50 nm

(a) RT implantation

(as-implanted)

50 nm

50 nm

(b) 800℃ implantation

(after annealing)

50 nm

(c) 1000℃ implantation

(after annealing)

50 nm

(b) 800℃ implantation

(as-implanted)

Fig. 7.

22

(c) 1000℃ implantation

(as-implanted)

Template for JJAP Regular Papers (Jan. 2014)

10-2

-4

Current (A)

10

(a) RT implantation

(after annealing)

(b) 800℃ implantation

(after annealing)

(c) 1000℃ implantation

(after annealing)

-6

10

10-8

-10

10

-12

10

Semi-log scale

10-14

Semi-log scale

Semi-log scale

-4

1x10

-5

Current (A)

8x10

-5

6x10

-5

4x10

-5

2x10

-5

-2x10

-10

-5

Linear scale

10 -10

-5

Linear scale

10 -10

Voltage (V)

Fig. 8.

23

-5

Linear scale

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る