リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Etching-induced damage in heavily Mg-doped p-type GaN and its suppression by low-bias-power inductively coupled plasma-reactive ion etching」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Etching-induced damage in heavily Mg-doped p-type GaN and its suppression by low-bias-power inductively coupled plasma-reactive ion etching

Kumabe, Takeru Ando, Yuto Watanabe, Hirotaka Deki, Manato Tanaka, Atsushi Nitta, Shugo Honda, Yoshio Amano, Hiroshi 名古屋大学

2021.05

概要

Inductively coupled plasma–reactive ion etching (ICP–RIE)-induced damage in heavily Mg-doped p-type GaN ([Mg] = 2 × 10^19 cm^−3) was investigated by low-temperature photoluminescence (PL) and depth-resolved cathodoluminescence (CL) spectroscopy. From PL measurements, we found broad yellow luminescence (YL) with a maximum at around 2.2–2.3 eV, whose origin was considered to be isolated nitrogen vacancies (VN), only in etched samples. The depth-resolved CL spectroscopy revealed that the etching-induced YL was distributed up to the electron-beam penetration depth of around 200 nm at a high ICP–RIE bias power (Pbias). Low-bias-power (low-Pbias) ICP–RIE suppressed the YL and its depth distribution to levels similar to those of an unetched sample, and a current–voltage characteristic comparable to that of an unetched sample was obtained for a sample etched with Pbias of 2.5 W.

この論文で使われている画像

参考文献

1) T. Oka, Y. Ueno, T. Ina, and K. Hasegawa, Appl. Phys. Express 7, 021002 (2014).

2) T. Oka, T. Ina, Y. Ueno, and J. Nishii, Appl. Phys. Express 8, 054101 (2015).

3) R. D. Dupuis, J. Kim, Y.-C. Lee, Z. Lochner, M.-H. Ji, T.-T. Kao, J.-H. Ryou, T. Detchphrom, and S.-C. Shen, ECS Trans. 58, 261 (2013).

4) S.-C. Shen, R. D. Dupuis, Z. Lochner, Y.-C. Lee, T.-T. Kao, Y. Zhang, H.-J. Kim, and H.-H. Ryou, Semicond. Sci. Technol. 28, 074025 (2013).

5) S. J. Pearton, R. J. Shul, and F. Ren, MRS Internet J. Nitride Semicond. Res. 5, 11 (2000).

6) Z.-Q. Fang, D. C. Look, X.-L. Wang, J. Han, F. A. Khan, and I. Adesida, Appl. Phys. Lett. 82, 1562 (2003).

7) S. Kim, Y. Hori, W.-C. Ma, D. Kikuta, T. Narita, H. Iguchi, T. Uesugi, T. Kachi, and T. Hashizume, Jpn. J. Appl. Phys. 51, 060201 (2012).

8) R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, and F. Ren, J. Vac. Sci. Technol. A 18 (4), 1139 (2000).

9) N. Asai, H. Ohta, F. Horikiri, Y. Narita, T. Yoshida, and T. Mishima, Jpn. J. Appl. Phys. 58, SCCD05 (2019).

10) R. Kometani, K. Ishikawa, K. Takeda, H. Kondo, M. Sekine, and M. Hori, Appl. Phys. Express 6, 056201 (2013).

11) Z. Liu, J. Pan, A. Asano, K. Ishikawa, K. Takeda, H. Kondo, O. Oda, M. Sekine, and M. Hori, Jpn. J. Appl. Phys. 56, 026502 (2017).

12) X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, Appl. Phys. Lett. 75, 2569 (1999).

13) A. Baharin, M. Kocan, U. K. Mishra, G. Parish, and B. D. Nener, Opt. Mater. 32, 700 (2010).

14) J.-M. Lee, K.-S. Lee, and S.-J. Park, J. Vac. Sci. Technol. B 22 (2), 479 (2004).

15) J.-M. Lee, K.-M. Chang, S.-W. Kim, C. Huh, I.-H. Lee, and S.-J. Park, J. Appl. Phys. 87, 7667 (2000).

16) D. G. Kent, K. P. Lee, A. P. Zhang, B. Luo, M. E. Overberg, C. R. Abernathy, F. Ren, K. D. Mackenzie, S. J. Pearton, and Y. Nakagawa, Solid-State Electron. 45, 1837 (2001).

17) K.-M. Chang, C.-C. Cheng, and J.-Y. Chu, J. Electrochem. Soc. 149, G367 (2002).

18) Y.-T. Moon, D.-J. Kim, J.-S. Park, J.-T. Oh, J.-M. Lee, and S.-J. Park, J. Vac. Sci. Technol. B 22 (2), 489 (2004).

19) A. Terano, H. Imadate, and K. Shiojima, Materi. Sci. Semicond. Process. 70, 92 (2017).

20) J. He, Y. Zhong, Y. Zhou, X. Guo, Y. Huang, J. Liu, M. Feng, Q. Sun, M. Ikeda, and H. Yang, Appl. Phys. Express 12, 055507 (2019).

21) M. Kato, K. Mikamo, M. Ichimura, M. Kanechika, O. Ishiguro, and T. Kachi, J. Appl. Phys. 103, 093701 (2008).

22) S. Yamada, M. Omori, H. Sakurai, Y. Osada, R. Kamimura, T. Hashizume, J. Suda, and T. Kachi, Appl. Phys. Express 13, 016505 (2020).

23) T. Kumabe, Y. Ando, H. Watanabe, Y. Honda, M. Deki, A. Tanaka, S. Nitta, and H. Amano, Ext. Abstr. Solid State Devices and Materials, 2020, p. 199.

24) W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

25) M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

26) Q. Yan, A. Janotti, M. Scheffler, and C. G. Van de Walle, Appl. Phys. Lett. 100, 142110 (2012).

27) K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).

28) J. I. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis 3rd edition (Springer, New York, 2003) p. 72.

29) M. Toth and M. R. Phillips, Scanning 20, 425 (1998).

30) K. Fleischer, T. Toth, M. R. Phillips, J. Zou, G. Li, and S. J. Chua, Appl. Phys. Lett. 74, 1114 (1999).

31) I.-H. Lee, I.-H. Choi, C. R. Lee, and S. K. Noh, Appl. Phys. Lett. 71, 1359 (1997).

32) T. Makimoto, K. Kumakura, and N. Kobayashi, J. Cryst. Growth 221, 350 (2000).

33) T. Narita, D. Kikuta, N. Takahashi, K. Kataoka, Y. Kimoto, T. Uesugi, T. Kachi, and M. Sugimoto, Phys. Stat. Solidi A 208 (7), 1541 (2011).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る