リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

TDP-43 regulates cholesterol biosynthesis by inhibiting sterol regulatory element-binding protein 2

Egawa, Naohiro Izumi, Yuishin Suzuki, Hidefumi Tsuge, Itaru Fujita, Koji Shimano, Hitoshi Izumikawa, Keiichi Takahashi, Nobuhiro Tsukita, Kayoko Enami, Takako Nakamura, Masahiro Watanabe, Akira Naitoh, Motoko Suzuki, Shigehiko Seki, Tsuneyoshi Kobayashi, Kazuhiro Toda, Tatsushi Kaji, Ryuji Takahashi, Ryosuke Inoue, Haruhisa 京都大学 DOI:10.1038/s41598-022-12133-4

2022

概要

Dyslipidemia is considered an essential component of the pathological process of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disease. Although TAR DNA Binding Protein 43 kDa (TDP-43) links both familial and sporadic forms of ALS and cytoplasmic aggregates are a hallmark of most cases of ALS, the molecular mechanism and the in vivo relation of ALS dyslipidemia with TDP-43 have been unclear. To analyze the dyslipidemia-related gene expression by TDP-43, we performed expression microarray and RNA deep sequencing (RNA-Seq) using cell lines expressing high levels of TDP-43 and identified 434 significantly altered genes including sterol regulatory element-binding protein 2 (SREBP2), a master regulator of cholesterol homeostasis and its downstream genes. Elevated TDP-43 impaired SREBP2 transcriptional activity, leading to inhibition of cholesterol biosynthesis. The amount of cholesterol was significantly decreased in the spinal cords of TDP-43-overexpressed ALS model mice and in the cerebrospinal fluids of ALS patients. These results suggested that TDP-43 could play an essential role in cholesterol biosynthesis in relation to ALS dyslipidemia.

この論文で使われている画像

参考文献

1. Bruijn, L. I., Miller, T. M. & Cleveland, D. W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu.

Rev. Neurosci. 27, 723–749. https://​doi.​org/​10.​1146/​annur​ev.​neuro.​27.​070203.​144244 (2004).

2. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314,

130–133. https://​doi.​org/​10.​1126/​scien​ce.​11341​08 (2006).

Scientific Reports |

Vol:.(1234567890)

(2022) 12:7988 |

https://doi.org/10.1038/s41598-022-12133-4

10

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

3. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and

amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611. https://​doi.​org/​10.​1016/j.​bbrc.​2006.​10.​093 (2006).

4. Gallo, V. et al. Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: the EPIC cohort. Neurology 80, 829–838.

https://​doi.​org/​10.​1212/​WNL.​0b013​e3182​840689 (2013).

5. Huisman, M. H. et al. Effect of presymptomatic body mass index and consumption of fat and alcohol on amyotrophic lateral

sclerosis. JAMA Neurol. 72, 1155–1162. https://​doi.​org/​10.​1001/​jaman​eurol.​2015.​1584 (2015).

6. Jawaid, A., Khan, R., Polymenidou, M. & Schulz, P. E. Disease-modifying effects of metabolic perturbations in ALS/FTLD. Mol.

Neurodegener. 13, 63. https://​doi.​org/​10.​1186/​s13024-​018-​0294-0 (2018).

7. Mariosa, D. et al. Blood biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk of amyotrophic lateral sclerosis: A more than 20-year follow-up of the Swedish AMORIS cohort. Ann. Neurol. 81, 718–728. https://​doi.​org/​10.​1002/​ana.​24936

(2017).

8. Dorst, J. et al. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral

sclerosis. J. Neurol. 258, 613–617. https://​doi.​org/​10.​1007/​s00415-​010-​5805-z (2011).

9. Dupuis, L. et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70, 1004–1009. https://​doi.​org/​10.​

1212/​01.​wnl.​00002​85080.​70324.​27 (2008).

10. Chio, A. et al. Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73, 1681–1685.

https://​doi.​org/​10.​1212/​WNL.​0b013​e3181​c1df1e (2009).

11. Zhang, L., Tang, L., Huang, T. & Fan, D. Life course adiposity and amyotrophic lateral sclerosis: A Mendelian randomization study.

Ann. Neurol. 87, 434–441. https://​doi.​org/​10.​1002/​ana.​25671 (2020).

12. Fergani, A. et al. Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis. J. Lipid Res. 48, 1571–

1580. https://​doi.​org/​10.​1194/​jlr.​M7000​17-​JLR200 (2007).

13. Kim, S. M. et al. Amyotrophic lateral sclerosis is associated with hypolipidemia at the presymptomatic stage in mice. PLoS ONE

6, e17985. https://​doi.​org/​10.​1371/​journ​al.​pone.​00179​85 (2011).

14. Manzo, E. et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. Elife https://​doi.​org/​10.​7554/​

eLife.​45114 (2019).

15. Hollinger, S. K., Okosun, I. S. & Mitchell, C. S. Antecedent disease and amyotrophic lateral sclerosis: What is protecting whom?.

Front. Neurol. 7, 47. https://​doi.​org/​10.​3389/​fneur.​2016.​00047 (2016).

16. Valenza, M. et al. Dysfunction of the cholesterol biosynthetic pathway in Huntington’s disease. J. Neurosci. 25, 9932–9939. https://​

doi.​org/​10.​1523/​JNEUR​OSCI.​3355-​05.​2005 (2005).

17. Hop, P. J. et al. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways

in ALS. Sci. Transl. Med. 14, eabj0264. https://​doi.​org/​10.​1126/​scitr​anslm​ed.​abj02​64 (2022).

18. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104. https://​

doi.​org/​10.​1126/​scitr​anslm​ed.​30040​52 (2012).

19. Izumikawa, K. et al. TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Sci. Rep. 7, 7709. https://​doi.​org/​

10.​1038/​s41598-​017-​06953-y (2017).

20. Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and

frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA. 106, 18809–18814. https://d

​ oi.o

​ rg/1​ 0.1​ 073/p

​ nas.0​ 90876​ 7106 (2009).

21. Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues.

J. Biol. Chem. 226, 497–509 (1957).

22. Matsuzawa, N. et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46, 1392–1403.

https://​doi.​org/​10.​1002/​hep.​21874 (2007).

23. Brown, M. S. & Goldstein, J. L. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound

transcription factor. Cell 89, 331–340 (1997).

24. Shimano, H. & Sato, R. SREBP-regulated lipid metabolism: Convergent physiology-divergent pathophysiology. Nat. Rev. Endocrinol.

13, 710–730. https://​doi.​org/​10.​1038/​nrendo.​2017.​91 (2017).

25. Hatzipetros, T. et al. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus

of the colon without exhibiting key features of ALS. Brain Res. 1584, 59–72. https://​doi.​org/​10.​1016/j.​brain​res.​2013.​10.​013 (2014).

26. Saher, G. & Stumpf, S. K. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim. Biophys. Acta 1083–1094,

2015. https://​doi.​org/​10.​1016/j.​bbalip.​2015.​02.​010 (1851).

27. Ho, W. Y. et al. TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination. J. Cell Biol. https://​

doi.​org/​10.​1083/​jcb.​20191​0213 (2021).

28. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs.

Nat. Neurosci. 15, 1488–1497. https://​doi.​org/​10.​1038/​nn.​3230 (2012).

29. Swarup, V. et al. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic

pathways. J. Exp. Med. 208, 2429–2447. https://​doi.​org/​10.​1084/​jem.​20111​313 (2011).

30. Dodge, J. C. et al. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. J. Neurosci. 40,

9137–9147. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​1388-​20.​2020 (2020).

31. Canet-Pons, J. et al. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol

biosynthesis suppression. Neurobiol. Dis. 152, 105289. https://​doi.​org/​10.​1016/j.​nbd.​2021.​105289 (2021).

32. Mohamed, A., Saavedra, L., Di Pardo, A., Sipione, S. & PossedeChaves, E. Beta-amyloid inhibits protein prenylation and induces

cholesterol sequestration by impairing SREBP-2 cleavage. J. Neurosci. 32, 6490–6500. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​0630-​

12.​2012 (2012).

33. Karasinska, J. M. & Hayden, M. R. Cholesterol metabolism in Huntington disease. Nat. Rev. Neurol. 7, 561–572. https://​doi.​org/​

10.​1038/​nrneu​rol.​2011.​132 (2011).

34. Martin, L. J. Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs

Investig. Drugs J. 13, 568–580 (2010).

35. Lenglet, T. et al. A phase II–III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur. J. Neurol. 21, 529–536. https://​

doi.​org/​10.​1111/​ene.​12344 (2014).

36. Birolini, G. et al. SREBP2 gene therapy targeting striatal astrocytes ameliorates Huntington’s disease phenotypes. Brain https://​

doi.​org/​10.​1093/​brain/​awab1​86 (2021).

Acknowledgements

We would like to express our sincere gratitude to all our coworkers and collaborators, to Dr. Marta Valenza, Dr.

Elena Cattaneo, Dr. Yoshihiro Yoneda for providing plasmids, and to Dr. Keiko Imamura for supportive experiments and iPS Cell Research Fund.

Author contributions

H.I. conceived and planned the project. N.E., H.Shi., and H.I. designed the experiments. N.E. and H.I. wrote

the manuscript. N.E., H.Su., I.T., K.T., T.E., M.Nak., A.W., M. Nai., S.S., T.S., K.K. and T.T. performed the

Scientific Reports |

(2022) 12:7988 |

https://doi.org/10.1038/s41598-022-12133-4

11

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

experiments. R.T. did critical reading. Y.I., K.F. and R.K. recruited patients and analyzed their spinal fluids. K.I.

and N.T. generated DAP-TDP-43 cell lines. All authors reviewed the manuscript.

Funding

This research was funded in part by a Grant for the Core Center for iPS Cell Research of the Research Center

Network for Realization of Regenerative Medicine from AMED to H.I. and the Nakabayashi Trust for ALS

Research (N.E.).

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​12133-4.

Correspondence and requests for materials should be addressed to H.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

Vol:.(1234567890)

(2022) 12:7988 |

https://doi.org/10.1038/s41598-022-12133-4

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る