リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High Concentrations of Nucleotides Prevent Capillary Regression during Hindlimb Unloading by Inhibiting Oxidative Stress and Enhancing Mitochondrial Metabolism of Soleus Muscles in Rats」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High Concentrations of Nucleotides Prevent Capillary Regression during Hindlimb Unloading by Inhibiting Oxidative Stress and Enhancing Mitochondrial Metabolism of Soleus Muscles in Rats

Nakanishi, Ryosuke Hashimoto, Nagisa Takuwa, Miho Xing, Jihao Uemura, Mikiko un Nisa, Badur Tanaka, Masayuki Hirabayashi, Takumi Tanaka, Minoru Fujino, Hidemi 神戸大学

2023.12.28

概要

Prolonged inactivity in skeletal muscles decreases muscle capillary development because of an imbalance between pro- and antiangiogenic signals, mitochondrial metabolism disorders, and increased oxidative stress. Nucleotides have been shown to exert a dose-dependent effect on disuse-induced muscle atrophy. However, the dose-dependent effect on capillary regression in disused muscles remains unclear. Therefore, this study investigated the dose-dependent effect of nucleotides on capillary regression due to disuse. For this purpose, Wistar rats were divided into five groups as follows: control rats fed nucleotide-free diets (CON), hindlimb-unloaded rats fed nucleotide-free diets (HU), and hindlimb-unloaded rats fed 1.0%, 2.5%, and 5.0% nucleotide diets, (HU + 1.0% NT), (HU + 2.5% NT), and (HU + 5.0% NT), respectively. Unloading increased reactive oxygen species (ROS) production and decreased mitochondrial enzyme activity, thereby decreasing the number of muscle capillaries. In contrast, 5.0% nucleotide-containing diet prevented increases in ROS production and reductions in the expression levels of NAMPT, PGC-1α, and CPT-1b proteins. Moreover, 5.0% nucleotide-containing diet prevented mitochondrial enzyme activity (such as citrate synthase and beta-hydroxy acyl-CoA dehydrogenase activity) via NAMPT or following PGC-1α upregulation, thereby preventing capillary regression. Therefore, 5.0% nucleotide-containing diet is likely to prevent capillary regression by decreasing oxidative stress and increasing mitochondrial metabolism.

この論文で使われている画像

参考文献

1. Banachewicz, W., Supłat, D., Krzemiński, P., Pomorski, P. and

Barańska, J. (2005) P2 nucleotide receptors on C2C12 satellite

cells. Purinergic. Signal. 1; 249–257.

2. Bass, A., Brdiczka, D., Eyer, P., Hofer, S. and Pette, D. (1969)

Metabolic differentiation of distinct muscle types at the level of

enzymatic organization. Eur. J. Biochem. 10; 198–206.

3. Belhadj, S. I., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M.

and Abdrabbah, M. (2014) Reactive oxygen species, heat stress

and oxidative-induced mitochondrial damage. A review. Int. J.

Hyperthermia. 30; 513–523.

4. Bonner, J. S., Lantier, L., Hasenour, C. M., James, F. D., Bracy,

D. P. and Wasserman, D. H. (2013) Muscle-specific vascular

endothelial growth factor deletion induces muscle capillary

rarefaction creating muscle insulin resistance. Diabetes. 62; 572–

580.

5. Carver, J. D. and Allan Walker, W. A. (1995) The role of

nucleotides in human nutrition. J. Nutr. Biochem. 6; 58–72.

6. Costford, S. R., Brouwers, B., Hopf, M. E., Sparks, L. M.,

Dispagna, M., Gomes, A. P., et al. (2018) Skeletal muscle

overexpression of nicotinamide phosphoribosyl transferase in

mice coupled with voluntary exercise augments exercise

endurance. Mol. Metab. 7; 1–11.

7. Dangott, B., Schultz, E. and Mozdziak, P. E. (2000) Dietary

creatine monohydrate supplementation increases satellite cell

mitotic activity during compensatory hypertrophy. Int. J. Sports.

Med. 21; 13–16.

8. Frederick, D. W., Loro, E., Liu, L., Davila Jr, A., Chellappa, K.,

Silverman, I. M., et al. (2016) Loss of NAD homeostasis leads to

progressive and reversible degeneration of skeletal muscle. Cell

Metab. 24; 269–282.

9. Fukuda, T., Ito, H. and Yoshida, T. (2004) Effect of the walnut

polyphenol fraction on oxidative stress in type 2 diabetes mice.

BioFactors. 21; 251–253.

10. Garten, A., Schuster, S., Penke, M., Gorski, T., de Giorgis, T. and

Kiess, W. (2015) Physiological and pathophysiological roles of

NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 11; 535–

546.

11. Ha, E. and Zemel, M. B. (2003) Functional properties of whey,

whey components, and essential amino acids: mechanisms

underlying health benefits for active people (review). J. Nutr.

Biochem. 14; 251–258.

12. Hepple, R. T. (2000) Skeletal muscle: microcirculatory

adaptation to metabolic demand. Med. Sci. Sports. Exerc. 32;

117–123.

13. Hirabayashi, T., Nakanishi, R., Tanaka, M., Nisa, B. U.,

Maeshige, N., Kondo, H., et al. (2021) Reduced metabolic

capacity in fast and slow skeletal muscle via oxidative stress and

the energy‐sensing of AMPK/SIRT1 in malnutrition. Physiol.

Rep. 9; e14763.

14. Hirayama, Y., Nakanishi, R., Maeshige, N. and Fujino, H. (2017)

Preventive effects of nucleoprotein supplementation combined

with intermittent loading on capillary regression induced by

hindlimb unloading in rat soleus muscle. Physiol. Rep. 5; 1–8.

15. Kanazashi, M., Tanaka, M., Nakanishi, R., Maeshige, N. and

Fujino, H. (2019) Effects of astaxanthin supplementation and

electrical stimulation on muscle atrophy and decreased oxidative

104

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Nakanishi et al.

capacity in soleus muscle during hindlimb unloading in rats. J.

Physiol. Sci. 69; 757–767.

Kuczmarski, J. M., Hord, J. M., Lee, Y., Guzzoni, V., Rodriguez,

D., Lawler, M. S., et al. (2018) Effect of Eukarion-134 on AktmTOR signalling in the rat soleus during 7 days of mechanical

unloading. Exp. Physiol. 103; 545–558.

Lawler, J. M., Garcia-Villatoro, E. L., Guzzoni, V., Hord, J. M.,

Botchlett, R., Holly, D., et al. (2019) Effect of combined fish oil

& curcumin on murine skeletal muscle morphology and stress

response proteins during mechanical unloading. Nutr. Res. 65;

17–28.

Liang, H. and Ward, W. F. (2006) PGC-1α: a key regulator of

energy metabolism. Adv. Physiol. Educ. 30; 145–151.

Liu, T. F., Vachharajani, V. T., Yoza, B. K. and McCall, C. E.

(2012) NAD+-dependent sirtuin 1 and 6 proteins coordinate a

switch from glucose to fatty acid oxidation during the acute

inflammatory response. J. Biol. Chem. 287; 25758–25769.

Luo, C., Widlund, H. R. and Puigserver, P. (2016) PGC-1

coactivators: shepherding the mitochondrial biogenesis of

tumors. Trends. Cancer. 2; 619–631.

Momken, I., Stevens, L., Bergouignan, A., Desplanches, D.,

Rudwill, F., Chery, I., et al. (2011) Resveratrol prevents the

wasting disorders of mechanical unloading by acting as a

physical exercise mimetic in the rat. FASEB J. 25; 3646–3660.

Morey, E. R., Sabelman, E. E., Turner, R. T. and Baylink, D. J.

(1979) A new rat model simulating some aspects of space flight.

Physiologist. 22; S23–S24.

Nakanishi, R., Tanaka, M., Maeshige, N., Kondo, H., Roy, R. R.

and Fujino, H. (2021) Nucleoprotein-enriched diet enhances

protein synthesis pathway and satellite cell activation via

ERK1/2 phosphorylation in unloaded rat muscles. Exp. Physiol.

106; 1587–1596.

Ohira, Y., Yasui, W., Kariya, F., Wakatsuki, T., Nakamura, K.,

Asakura, T., et al. (1994) Metabolic adaptation of skeletal

muscles to gravitational unloading. Acta Astronaut. 33; 113–117.

Olfert, I. M., Howlett, R. A., Tang, K., Dalton, N. D., Gu, Y.,

Peterson, K. L., et al. (2009) Muscle‐specific VEGF deficiency

greatly reduces exercise endurance in mice. J. Physiol. 587;

1755–1767.

Poole, D. C. and Mathieu‐Costello, O. (1996) Relationship

between fiber capillarization and mitochondrial volume density

in control and trained rat soleus and plantaris muscles.

Microcirculation 3; 175–186.

27. Qaisar, R., Karim, A. and Elmoselhi, A. B. (2020) Muscle

unloading: A comparison between spaceflight and ground‐based

models. Acta Physiol. (Oxf.) 228; e13431.

28. Schulz, H. (1991) Beta oxidation of fatty acids. Biochim.

Biophys. Acta 1081; 109–120.

29. Srere, P. A. (1969) Citrate synthase: [EC4.1.3.7.Citrate

oxaloacetate-lyase (CoA-acetylating)]. Methods. Enzymol. 13; 3–

11.

30. Suwa, M., Nakano, H., Radak, Z. and Kumagai, S. (2008)

Endurance exercise increases the SIRT1 and peroxisome

proliferator-activated receptor γ coactivator-1α protein

expressions in rat skeletal muscle. Metabolism. 57; 986–998.

31. Tanaka, M., Kanazashi, M., Kondo, H., Ishihara, A. and Fujino,

H. (2021) Licorice flavonoid oil supplementation promotes a

reduction of visceral fat in exercised rats. J. Sports. Med. Phys.

Fitness. 61; 480–488.

32. Tanaka, M., Kanazashi, M., Kondo, H. and Fujino, H. (2022)

Time course of capillary regression and an expression balance

between vascular endothelial growth factor‐A and

thrombospondin‐1 in the soleus muscle of hindlimb unloaded

rats. Muscle. Nerve. 65; 350–360.

33. Wüst, R. C., Gibbings, S. L. and Degens, H. (2009) Fiber

capillary supply related to fiber size and oxidative capacity in

human and rat skeletal muscle. Adv. Exp. Med. Biol. 645; 75–80.

34. Xing, J., Pan, H., Lin, H., Nakanishi, R., Hirabayashi, T.,

Nakayama, E., et al. (2021) Protective effects of chlorogenic acid

on capillary regression caused by disuse muscle atrophy. Biomed.

Res. 42; 257–264.

35. Xu, M., Liang, R., Guo, Q., Wang, S., Zhao, M., Zhang, Z., et al.

(2013) Dietary nucleotides extend the life span in SpragueDawley rats. J. Nutr. Health. Aging. 17; 223–229.

36. Yeo, D., Kang, C., Gomez-Cabrera, M. C., Vina, J. and Ji, L. L.

(2019) Intensified mitophagy in skeletal muscle with aging is

downregulated by PGC-1alpha overexpression in vivo. Free.

Radic. Biol. Med. 130; 361–368.

37. Zhu, N., Liu, X., Xu, M. and Li, Y. (2021) Dietary nucleotides

retard oxidative stress-induced senescence of human umbilical

vein endothelial cells. Nutrients. 13; 1–14.

This is an open access article distributed under the Creative Commons

Attribution-NonCommercial 4.0 International License (CC-BY-NC), which

permits use, distribution and reproduction of the articles in any medium

provided that the original work is properly cited and is not used for commercial

purposes.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る