リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stabilization and structural changes of 2D DNA origami by enzymatic ligation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stabilization and structural changes of 2D DNA origami by enzymatic ligation

Rajendran, Arivazhagan Krishnamurthy, Kirankumar Giridasappa, Amulya Nakata, Eiji Morii, Takashi 京都大学 DOI:10.1093/nar/gkab611

2021.08

概要

The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e., nicks) of the staple strands. In molecular biology, enzymatic ligation is commonly used to seal the nicks in the duplex DNA. However, in DNA nanotechnology, the ligation procedures are neither optimized for the DNA origami nor routinely applied to link the nicks in it. Here, we report a detailed analysis and optimization of the conditions for the enzymatic ligation of the staple strands in four types of 2D square lattice DNA origami. Our results indicated that the ligation takes overnight, efficient at 37°C rather than the usual 16°C or room temperature, and typically requires much higher concentration of T4 DNA ligase. Under the optimized conditions, up to 10 staples ligation with a maximum ligation efficiency of 55% was achieved. Also, the ligation is found to increase the thermal stability of the origami as low as 5°C to as high as 20°C, depending on the structure. Further, our studies indicated that the ligation of the staple strands influences the globular structure/planarity of the DNA origami, and the origami is more compact when the staples are ligated. The globular structure of the native and ligated origami was also found to be altered dynamically and progressively upon ethidium bromide intercalation in a concentration-dependent manner.

この論文で使われている画像

参考文献

1. Seeman,N.C. (1982) Nucleic acid junctions and lattices. J. Theor.

Biol., 99, 237–247.

2. Seeman,N.C. (2003) DNA in a material world. Nature, 421, 427–431.

3. Rothemund,P.W.K. (2006) Folding DNA to create nanoscale shapes

and patterns. Nature, 440, 297–302.

4. Lund,K., Liu,Y., Lindsay,S. and Yan,H. (2005) Self-assembling a

molecular pegboard. J. Am. Chem. Soc., 127, 17606–17607.

5. Park,S.H., Pistol,C., Ahn,S.J., Reif,J.H., Lebeck,A.R., Dwyer,C. and

LaBean,T.H. (2006) Finite-size, fully addressable DNA tile lattices

formed by hierarchical assembly procedures. Angew. Chem. Int. Ed.,

45, 735–739.

6. Chworos,A., Severcan,I., Koyfman,A.Y., Weinkam,P., Oroudjev,E.,

Hansma,H.G. and Jaeger,L. (2004) Building Programmable jigsaw

puzzles with RNA. Science, 306, 2068–2072.

7. Kuzuya,A. and Komiyama,M. (2009) Design and construction of a

box-shaped 3D-DNA origami. Chem. Commun., 28, 4182–4184.

8. Ke,Y., Sharma,J., Liu,M., Jahn,K., Liu,Y. and Yan,H. (2009)

Scaffolded DNA origami of a DNA tetrahedron molecular container.

Nano Lett., 9, 2445–2447.

9. Douglas,S.M., Dietz,H., Liedl,T., Hogberg,B.,

Graf,F. and

Shih,W.M. (2009) Self-assembly of DNA into nanoscale

three-dimensional shapes. Nature, 459, 414–418.

10. Rajendran,A., Endo,M., Katsuda,Y., Hidaka,K. and Sugiyama,H.

(2011) Programmed two-dimensional self-assembly of multiple DNA

origami jigsaw pieces. ACS Nano, 5, 665–671.

11. Endo,M., Sugita,T., Rajendran,A., Katsuda,Y., Emura,T., Hidaka,K.

and Sugiyama,H. (2011) Two-dimensional DNA origami assemblies

using a four-way connector. Chem. Commun., 47, 3213–3215.

12. Liu,W., Zhong,H., Wang,R. and Seeman,N.C. (2011) Crystalline

two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed., 50,

264–267.

13. Zhao,Z., Liu,Y. and Yan,H. (2011) Organizing DNA origami tiles

into larger structures using preformed scaffold frames. Nano Lett.,

11, 2997–3002.

14. Rajendran,A., Endo,M., Hidaka,K., Shimada,N., Maruyama,A. and

Sugiyama,H. (2014) A lock-and-key mechanism for the controllable

fabrication of DNA origami structures. Chem. Commun., 50,

8743–8746.

15. Eskelinen,A.-P., Rosilo,H., Kuzyk,A., Torma,P. and Kostiainen,M.A.

(2012) Controlling the formation of DNA origami structures with

external signals. Small, 8, 2016–2020.

16. Rajendran,A., Endo,M. and Sugiyama,H. (2012) DNA origami:

synthesis and self-assembly. Curr. Protoc. Nucleic Acid Chem., 48,

12.9.1–12.9.18.

17. Sharma,J., Chhabra,R., Andersen,C.S., Gothelf,K.V., Yan,H. and

Liu,Y. (2008) Toward reliable gold nanoparticle patterning on

self-assembled DNA nanoscaffold. J. Am. Chem. Soc., 130,

7820–7821.

Downloaded from https://academic.oup.com/nar/article/49/14/7884/6325261 by Kyoto University user on 01 June 2022

Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan) for the Grants-in-Aid for Scientific Research [16K17934, 21K05274 to A.R., 19H04653,

20H02860 to E.N., 17H01213 to T.M., JST CREST JPMJCR18H5 to T.M.]; Kyoto University Foundation for the

Research Grant [to A.R.]; Institute of Advanced Energy,

Kyoto University for the Research Grant for Collaboration Program of the Laboratory for Complex Energy Processes [to A.R.]; MEXT-SGU Scholarship [to K.K.]. Funding for open access charge: Core Research for Evolutional

Science and Technology [JPMJCR18H5].

Conflict of interest statement. None declared.

18. Ding,B., Deng,Z., Yan,H., Cabrini,S., Zuckermann,R.N. and

Bokor,J. (2010) Gold nanoparticle self-similar chain structure

organized by DNA origami. J. Am. Chem. Soc., 132, 3248–3249.

19. Wang,R., Nuckolls,C. and Wind,S.J. (2012) Assembly of

heterogeneous functional nanomaterials on DNA origami scaffolds.

Angew. Chem. Int. Ed., 51, 11325–11327.

20. Maune,H.T., Han,S.-P., Barish,R.D., Bockrath,M., Goddard,W.A.

III, Rothemund,P.W.K. and Winfree,E. (2010) Self-assembly of

carbon nanotubes into two-dimensional geometries using DNA

origami templates. Nat. Nanotechnol., 5, 61–66.

21. Rajendran,A., Nakata,E., Nakano,S. and Morii,T. (2017)

Nucleic-acid-templated enzyme cascades. Chem. Biol. Chem., 18,

696–716.

22. Stephanopoulos,N., Liu,M., Tong,G.J., Li,Z., Liu,Y., Yan,H. and

Francis,M.B. (2010) Immobilization and one-dimensional

arrangement of virus capsids with nanoscale precision using DNA

origami. Nano Lett., 10, 2714–2720.

23. Udomprasert,A. and Kangsamaksin,T. (2017) DNA origami

applications in cancer therapy. Cancer Sci., 108, 1535–1543.

24. Rajendran,A., Endo,M. and Sugiyama,H. (2012) Single-molecule

analysis using DNA origami. Angew. Chem. Int. Ed., 51, 874–890.

25. Rajendran,A., Endo,M., Katsuda,Y., Hidaka,K. and Sugiyama,H.

(2011) Photo-cross-linking-assisted thermal stability of DNA origami

structures and its application for higher-temperature self-assembly. J.

Am. Chem. Soc., 133, 14488–14491.

26. O’Neill,P., Rothemund,P.W.K., Kumar,A. and Fygenson,D.K. (2006)

Sturdier DNA nanotubes via ligation. Nano Lett., 6, 1379–1383.

27. Endo,M., Hidaka,K. and Sugiyama,H. (2011) Direct AFM

observation of an opening event of a DNA cuboid constructed via a

prism structure. Org. Biomol. Chem., 9, 2075–2077.

28. Rajendran,A., Endo,M. and Sugiyama,H. (2014) State-of-the-art

high-speed atomic force microscopy for investigation of

single-molecular dynamics of proteins. Chem. Rev., 114, 1493–1521.

29. Gerling,T., Kube,M., Kick,B. and Dietz,H. (2018)

Sequence-programmable covalent bonding of designed DNA

assemblies. Sci. Adv., 4, eaau1157.

30. Ramakrishnan,S., Ij¨as,H., Linko,V. and Keller,A. (2018) Structural

stability of DNA origami nanostructures under application-specific

conditions. Comput. Struct. Biotechnol. J., 16, 342–349.

31. Bila,H., Kurisinkal,E.E. and Bastings,M.M.C. (2019) Engineering a

stable future for DNA-origami as a biomaterial. Biomater. Sci., 7,

532–541.

32. Chen,H., Li,R., Li,S., Andr´easson,J. and Choi,J.H. (2017)

Conformational effects of UV light on DNA origami. J. Am. Chem.

Soc., 139, 1380–1383.

33. Mousavi-Khattat,M., Rafati,A. and Gill,P. (2015) Fabrication of

DNA nanotubes using origami-based nanostructures with sticky

ends. J. Nanostruct. Chem., 5, 177–183.

34. Yang,X., Wenzler,L.A., Qi,J., Li,X. and Seeman,N.C. (1998) Ligation

of DNA triangles containing double crossover molecules. J. Am.

Chem. Soc., 120, 9779–9786.

35. Petrillo,M.L., Newton,C.J., Cunningham,R.P., Ma,R.-I.,

Kallenbach,N.R. and Seeman,N.C. (1988) The ligation and flexibility

of four-arm DNA junctions. Biopolymers, 27, 1337–1352.

36. LaBean,T.H., Yan,H., Kopatsch,J., Liu,F., Winfree,E., Reif,J.H. and

Seeman,N.C. (2000) Construction, analysis, ligation, and

self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc.,

122, 1848–1860.

37. Ramakrishnan,S., Sch¨arfen,L., Hunold,K., Fricke,S.,

Grundmeier,G., Schlierf,M., Keller,A. and Krainer,G. (2019)

Enhancing the stability of DNA origami nanostructures: staple strand

redesign versus enzymatic ligation. Nanoscale, 11, 16270–16276.

38. Mikkil¨a,J., Eskelinen,A.-P., Niemel¨a,E.H., Linko,V., Frilander,M.J.,

¨ a,P. and Kostiainen,M.A. (2014) Virus-encapsulated DNA

Torm¨

origami nanostructures for cellular delivery. Nano Lett., 14,

2196–2200.

39. Eskelinen,A.P., Kuzyk,A., Kaltiaisenaho,T.K., Timmermans,M.Y.,

¨ a,P. (2011) Assembly of

Nasibulin,A.G., Kauppinen,E.I. and Torm¨

single-walled carbon nanotubes on DNA-origami templates through

streptavidin-biotin interaction. Small, 7, 746–750.

¨ a,P. (2008)

40. Kuzyk,A., Yurke,B., Toppari,J.J., Linko,V. and Torm¨

Dielectrophoretic trapping of DNA origami. Small, 4, 447–450.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

7900 Nucleic Acids Research, 2021, Vol. 49, No. 14

52.

53.

54.

55.

56.

57.

58.

59.

60.

folding: underwinding for specific intercalator rescue and

staple-break positioning. Chem. Sci., 3, 2587–2597.

Zadegan,R.M., Lindau,E.G., Klein,W.P., Green,C., Graugnard,E.,

Yurke,B., Kuang,W. and Hughes,W.L. (2017) Twisting of DNA

origami from intercalators. Sci. Rep., 7, 7382.

Baker,M.A.B., Tuckwell,A.J., Berengut,J.F., Bath,J., Benn,F.,

Duff,A.P., Whitten,A.E., Dunn,K.E., Hynson,R.M., Turberfield,A.J.

et al. (2018) Dimensions and global twist of single-layer DNA

origami measured by small-angle X-ray scattering. ACS Nano, 12,

5791–5799.

Keum,J.-W. and Bermudez,H. (2009) Enhanced resistance of

DNAnanostructures to enzymatic digestion. Chem. Commun., 45,

7036–7038.

Mallik,L., Dhakal,S., Nichols,J., Mahoney,J., Dosey,A.M., Jiang,S.,

Sunahara,R.K., Skiniotis,G. and Walter,N.G. (2015) Electron

microscopic visualization of protein assemblies on flattened DNA

origami. ACS Nano, 9, 7133–7141.

Johnson,A. and O’Donnell,M. (2005) DNA ligase: Getting a grip to

seal the deal. Curr. Biol., 15, R90–R92.

Suzuki,M., Hayashi,H., Mizuki,T., Maekawa,T. and Morimoto,H.

(2016) Efficient DNA ligation by selective heating of DNA ligase with

a radio frequency alternating magnetic field. Biochem. Biophys. Rep.,

8, 360–364.

Stopar,A., Coral,L., Di,G.S., Adedeji,A.F. and Castronovo,M. (2017)

Binary control of enzymatic cleavage of DNA origami by structural

antideterminants. Nucleic Acids Res., 46, 995–1006.

Ramakrishnan,S., Shen,B., Kostiainen,M.A., Grundmeier,G.,

Keller,A. and Linko,V. (2019) Real-time observation of

superstructure-dependent DNA origami digestion by DNase I using

high-speed atomic force microscopy. Chem. Biol. Chem., 20,

2818–2823.

Suma,A., Stopar,A., Nicholson,A.W., Castronovo,M. and

Carnevale,V. (2020) Global and local mechanical properties control

endonuclease reactivity of a DNA origami nanostructure. Nucleic

Acids Res., 48, 4672–4680.

Downloaded from https://academic.oup.com/nar/article/49/14/7884/6325261 by Kyoto University user on 01 June 2022

¨ a,P. and Toppari,J.J. (2009)

41. Linko,V., Paasonen,S.-T., Kuzyk,A., Torm¨

Characterization of the conductance mechanisms of DNA origami by

AC impedance spectroscopy. Small, 5, 2382–2386.

42. Shi,K., Bohl,T.E., Park,J., Zasada,A., Malik,S., Banerjee,S., Tran,V.,

Li,N., Yin,Z., Kurniawan,F. et al. (2018) T4 DNA ligase structure

reveals a prototypical ATP-dependent ligase with a unique mode of

sliding clamp interaction. Nucleic Acids Res., 46, 10474–10488.

43. Endo,M., Katsuda,Y., Hidaka,K. and Sugiyama,H. (2010)

Regulation of DNA methylation using different tensions of double

strands constructed in a defined DNA nanostructure. J. Am. Chem.

Soc., 132, 1592–1597.

44. Ngo,T.A., Nakata,E., Saimura,M. and Morii,T. (2016) Spatially

organized enzymes drive cofactor-coupled cascade reactions. J. Am.

Chem. Soc., 138, 3012–3021.

45. Nakata,E., Liew,F.F., Uwatoko,C., Kiyonaka,S., Mori,Y.,

Katsuda,Y., Endo,M., Sugiyama,H. and Morii,T. (2012) Zinc-finger

proteins for site-specific protein positioning on DNA-origami

structures. Angew. Chem. Int. Ed., 51, 2421–2424.

46. Phol,F.M., Thomae,R. and Karst,A. (1982) Temperature dependence

of the activity of DNA-modifying enzymes: endonucleases and DNA

ligase. Eur. J. Biochem., 123, 141–152.

47. Sigmon,J. and Larcom,L.L. (1996) The effect of ethidium bromide on

mobility of DNA fragments in agarose gel electrophoresis.

Electrophoresis, 17, 1524–1527.

48. Douglas,S.M., Bachelet,I. and Church,G.M. (2012) A logic-gated

nanorobot for targeted transport of molecular payloads. Science, 335,

831–834.

49. Liu,L.F. and Wang,J.C. (1975) On the degree of unwinding of the

DNA helix by ethidium: II. Studies by electron microscopy. Biochim.

Biophys. Acta Nucleic Acids Protein Synth., 395, 405–412.

50. Chen,H., Zhang,H., Pan,J., Cha,T.-G., Li,S., Andr´easson,J. and

Choi,J.H. (2016) Dynamic and progressive control of DNA origami

conformation by modulating DNA helicity with chemical adducts.

ACS Nano, 10, 4989–4996.

51. Ke,Y., Bellot,G., Voigt,N.V., Fradkov,E. and Shih,W.M. (2012) Two

design strategies for enhancement of multilayer–DNA-origami

...

参考文献をもっと見る