リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deformation constraints of graphene oxide nanochannels under reverse osmosis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deformation constraints of graphene oxide nanochannels under reverse osmosis

Guan, Kecheng Guo, Yanan Li, Zhan Jia, Yuandong Shen, Qin Nakagawa, Keizo Yoshioka, Tomohisa Liu, Gongping Jin, Wanqin Matsuyama, Hideto 神戸大学

2023.02.23

概要

Nanochannels in laminated graphene oxide nanosheets featuring confined mass transport have attracted interest in multiple research fields. The use of nanochannels for reverse osmosis is a prospect for developing next-generation synthetic water-treatment membranes. The robustness of nanochannels under high-pressure conditions is vital for effectively separating water and ions with sub-nanometer precision. Although several strategies have been developed to address this issue, the inconsistent response of nanochannels to external conditions used in membrane processes has rarely been investigated. In this study, we develop a robust interlayer channel by balancing the associated chemistry and confinement stability to exclude salt solutes. We build a series of membrane nanochannels with similar physical dimensions but different channel functionalities and reveal their divergent deformation behaviors under different conditions. The deformation constraint effectively endows the nanochannel with rapid deformation recovery and excellent ion exclusion performance under variable pressure conditions. This study can help understand the deformation behavior of two-dimensional nanochannels in pressure-driven membrane processes and develop strategies for the corresponding deformation constraints regarding the pore wall and interior.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under

nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

Lu, S. M., Peng, Y. Y., Ying, Y. L. & Long, Y. T. Electrochemical sensing at a confined space. Anal. Chem. 92, 5621–5644 (2020).

Li, H., Xiao, J., Fu, Q. & Bao, X. Confined catalysis under twodimensional materials. Proc. Natl Acad. Sci. USA 114,

5930–5934 (2017).

Simon, P. & Gogotsi, Y. Capacitive energy storage in nanostructured

carbon–electrolyte systems. Acc. Chem. Res. 46, 1094–1103 (2013).

Ban, Y. et al. Confinement of ionic liquids in nanocages: tailoring the

molecular sieving properties of ZIF-8 for membrane-based CO2

capture. Angew. Chem. Int. Ed. 54, 15483–15487 (2015).

Muñoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous

chemistry within nanometric slit pores. Chem. Rev. 121,

6293–6320 (2021).

Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined

mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6,

294–312 (2021).

10

Article

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Zhan, H. et al. Solvation-involved nanoionics: new opportunities

from 2D nanomaterial laminar membranes. Adv. Mater. 32,

e1904562 (2020).

Wang, M., Hou, Y., Yu, L. & Hou, X. Anomalies of ionic/molecular

transport in nano and sub-nano confinement. Nano Lett. 20,

6937–6946 (2020).

Zhong, J. et al. Exploring anomalous fluid behavior at the nanoscale: direct visualization and quantification via nanofluidic devices.

Acc. Chem. Res. 53, 347–357 (2020).

Zhu, Z., Wang, D., Tian, Y. & Jiang, L. Ion/molecule transportation in

nanopores and nanochannels: from critical principles to diverse

functions. J. Am. Chem. Soc. 141, 8658–8669 (2019).

Thomas, J. A. & McGaughey, A. J. Reassessing fast water transport

through carbon nanotubes. Nano Lett. 8, 2788–2793 (2008).

Liu, G., Jin, W. & Xu, N. Graphene-based membranes. Chem. Soc.

Rev. 44, 5016–5030 (2015).

Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for nextgeneration desalination and water purification membranes. Nat.

Rev. Mater. 1, 1–15 (2016).

Yeh, C.-N. et al. Binder-free graphene oxide doughs. Nat. Commun.

10, 422 (2019).

Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene

oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS

Nano 11, 6440–6450 (2017).

Guan, K., Jia, Y., Lin, Y., Wang, S. & Matsuyama, H. Chemically

converted graphene nanosheets for the construction of ionexclusion nanochannel membranes. Nano Lett. 21,

3495–3502 (2021).

Zhang, M. et al. Controllable ion transport by surface-charged

graphene oxide membrane. Nat. Commun. 10, 1253 (2019).

Guan, K. C. et al. Nanochannel-confined charge repulsion of ions in

a reduced graphene oxide membrane. J. Mater. Chem. A 8,

25880–25889 (2020).

Zhang, M. et al. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem. Int. Ed. 59, 1689–1695 (2020).

Abraham, J. et al. Tunable sieving of ions using graphene oxide

membranes. Nat. Nanotechnol. 12, 546–550 (2017).

Li, W., Wu, W. & Li, Z. Controlling interlayer spacing of graphene

oxide membranes by external pressure regulation. ACS Nano 12,

9309–9317 (2018).

Huang, G. et al. Overcoming humidity-induced swelling of

graphene oxide-based hydrogen membranes using chargecompensating nanodiamonds. Nat. Energy 6, 1176–1187

(2021).

Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M.

Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

Zhou, X. et al. Intrapore energy barriers govern ion transport and

selectivity of desalination membranes. Sci. Adv. 6, eabd9045

(2020).

Talyzin, A. V. Random interstratification in hydrated graphene oxide

membranes and implications for seawater desalination. Nat.

Nanotechnol. 17, 134–135 (2022).

Abraham, J. et al. Reply to: Random interstratification in hydrated

graphene oxide membranes and implications for seawater desalination. Nat. Nanotechnol. 17, 134–135 (2022).

Wang, L., Williams, C. M., Boutilier, M. S. H., Kidambi, P. R. & Karnik,

R. Single-layer graphene membranes withstand ultrahigh applied

pressure. Nano Lett. 17, 3081–3088 (2017).

Zhu, C., Guo, S., Fang, Y. & Dong, S. Reducing sugar: new functional

molecules for the green synthesis of graphene nanosheets. ACS

Nano 4, 2429–2437 (2010).

Akhavan, O., Ghaderi, E., Aghayee, S., Fereydooni, Y. & Talebi, A.

The use of a glucose-reduced graphene oxide suspension for

Nature Communications | (2023)14:1016

https://doi.org/10.1038/s41467-023-36716-5

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

photothermal cancer therapy. J. Mater. Chem. 22, 13773–13781

(2012).

Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

Chen, H., Müller, M. B., Gilmore, K. J., Wallace, G. G. & Li, D.

Mechanically strong, electrically conductive, and biocompatible

graphene paper. Adv. Mater. 20, 3557–3561 (2008).

Iakunkov, A., Boulanger, N., Nordenström A. & Talyzin A. V. Swelling

pressures of graphite oxide and graphene oxide membranes in

water and ethanol. Adv. Mater. Interfaces 8, 2100552 (2021).

Miller-Chou, B. A. & Koenig, J. L. A review of polymer dissolution.

Prog. Polym. Sci. 28, 1223–1270 (2003).

Mo, Y. H., Zhao, X. & Shen, Y. X. Cation-dependent structural

instability of graphene oxide membranes and its effect on membrane separation performance. Desalination 399, 40–46 (2016).

Liang, Y. et al. Polyamide nanofiltration membrane with highly

uniform sub-nanometre pores for sub-1 Å precision separation. Nat.

Commun. 11, 2015 (2020).

Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes

for production of drinking water from seawater. Nat. Sustainability

3, 296–302 (2020).

Lu, Z. et al. Self-crosslinked MXene (Ti3C2Tx) membranes with

good antiswelling property for monovalent metal ion exclusion.

ACS Nano 13, 10535–10544 (2019).

Dou, H. et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane separation. Angew.

Chem. Int. Ed. 58, 13969–13975 (2019).

Chen, C. et al. Functionalized boron nitride membranes with

ultrafast solvent transport performance for molecular separation.

Nat. Commun. 9, 1902 (2018).

Wang, Y. et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with selfsupporting spacers. Angew. Chem. Int. Ed. 56, 8974–8980 (2017).

Xin, W. et al. High-performance silk-based hybrid membranes

employed for osmotic energy conversion. Nat. Commun. 10,

3876 (2019).

Chen, Y., Zhang, G., Liu, H. & Qu, J. Confining free radicals in close

vicinity to contaminants enables ultrafast fenton-like processes in

the interspacing of MoS2 membranes. Angew. Chem. Int. Ed. 58,

8134–8138 (2019).

Mortenson, M. E. Mathematics for Computer Graphics Applications

(Industrial Press Inc., 1999).

He, H., Klinowski, J., Forster, M. & Lerf, A. A new structural model for

graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

Chen, B., Jiang, H., Liu, X. & Hu, X. Molecular insight into water

desalination across multilayer graphene oxide membranes. ACS

Appl. Mater. Interfaces 9, 22826–22836 (2017).

Chen, Q. & Yang, X. Pyridinic nitrogen doped nanoporous graphene

as desalination membrane: molecular simulation study. J. Membr.

Sci. 496, 108–117 (2015).

Suk, M. E. & Aluru, N. R. Water transport through ultrathin graphene.

J. Phys. Chem. Lett. 1, 1590–1594 (2010).

Dai, H., Xu, Z. & Yang, X. Water permeation and ion rejection in layerby-layer stacked graphene oxide nanochannels: a molecular

dynamics simulation. J. Phys. Chem. C. 120, 22585–22596 (2016).

Van Der Spoel, D. et al. GROMACS: Fast, flexible, and free. J.

Comput. Chem. 26, 1701–1718 (2005).

Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular

dynamics. J. Mol. Graph. 14, 33–38 (1996).

Lu, T. Sobtop Version [1.0(dev3)]. http://sobereva.com/soft/Sobtop

(2023).

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A.

Development and testing of a general amber force field. J. Comput.

Chem. 25, 1157–1174 (2004).

11

Article

54. Tang, H. et al. Molecular dynamics study of the aggregation process

of graphene oxide in water. J. Phys. Chem. C. 119,

26712–26718 (2015).

55. Neese, F. The ORCA program system. Wiley Interdiscip. Rev.:

Comput. Mol. Sci. 2, 73–78 (2012).

56. Schauperl, M. et al. Non-bonded force field model with advanced

restrained electrostatic potential charges (RESP2). Commun. Chem.

3, 44 (2020).

57. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer.

J. Comput. Chem. 33, 580–592 (2012).

58. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A

linear constraint solver for molecular simulations. J. Comput. Chem.

18, 1463–1472 (1997).

59. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N)

method for Ewald sums in large systems. J. Chem. Phys. 98,

10089–10092 (1993).

60. Lefebvre, C. et al. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced

density gradient versus electron density. Phys. Chem. Chem. Phys.

19, 17928–17936 (2017).

Acknowledgements

This work was supported by the Kobe University Strategic International

Collaborative Research Grant Type B, Fostering Joint Research (H.M.),

the Japan Society for the Promotion of Science KAKENHI, grant No.

JP22H01849 (K.N.), and the National Natural Science Foundation of

China, grant Nos. 22211540008, 22038006, and 21921006 (W.J.).

Author contributions

K.G., W.J., and H.M. designed the research; K.G., Y.G., Z.L., Y.J., and Q.S.

performed the research; K.G., K.N., T.Y., G.L., W.J., and H.M. analyzed the

data; and K.G., Y.G., G.L., W.J., and H.M. wrote the paper.

https://doi.org/10.1038/s41467-023-36716-5

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-36716-5.

Correspondence and requests for materials should be addressed to

Wanqin Jin or Hideto Matsuyama.

Peer review information Nature Communications thanks Anthony

Straub and the other, anonymous, reviewer(s) for their contribution to

the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Competing interests

The authors declare no competing interests.

Nature Communications | (2023)14:1016

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る